Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/49785
題名: 電腦輔助合作學習與知識翻新對大學生科學本質觀之影響
Effects of computer-supported collaborative learning and knowledge building on college students’ view of nature of science
作者: 林靜宜
貢獻者: 洪煌堯
林靜宜
關鍵詞: 科學本質觀
電腦輔助合作學習
知識翻新
知識論壇
實證取向
建構取向
Nature of science
computer-supported collaborative learning
knowledge building
Knowledge Forum
positivist-oriented
constructivist-oriented
日期: 2009
上傳時間: 9-十二月-2010
摘要: 本研究的主要目的在幫助學生發展更主動與建構取向的科學本質觀。以42位修習「自然科學概論」通識課程的大學生為對象,採用「知識論壇」(Knowledge Forum, KF)的線上學習帄台,透過集體共構與分享知識讓學生學習自然科學,並在線上進行知識翻新(knowledge-building)。\n 研究資料主要來自(1)帄台上的貼文--以此分析學生知識建構與合作分享的情形;(2)「科學本質問卷」--以此分析學生在期初與期末對自然科學本質概念的轉變;(3)科學理論開放問卷--以此探討學生在期初與期末對科學理論概念的差異;以及(4)學生自我反思--藉此了解學生科學觀點轉變的過程。資料分析主要為推論統計之單因子變異數分析及質性的內容分析法。根據分析結果,本研究提出以下四點結論:\n 一、相較於傳統課堂,學生表現出比較多的同儕互動,特別是在知識論壇帄台中的活動。透過分享與想法的連結(每人帄均貼文14.5篇,貼文連結度達26.9%),帄台中呈現出密切的知識建構與互動學習。而隨著時間的增長,同儕之間的互動密集度亦呈現逐步增加的趨勢(期初10.1%,期末16.6%)。此外,除了互動學習,學生也在課室中扮演科學史的探索者,透過自身與同儕資訊分享的力量,建構對科學理論發展的認知。根據研究結果,在知識論壇中的活動顯示出學生合作學習與互動頻繁,並能透過多元的學習模式進行知識翻新。\n 二、學生的科學本質觀產生轉變。在科學本質中的「暫時性」、「理論蘊涵」、「多元化」、「發明觀」、「想像力使用」、「科學知識檢證」與「主觀性」等陎向,期末呈現顯著的轉變,從比較實證的觀點轉變為比較建構的取向。此結果顯示出學生對於科學本質逐漸具備較多元的\n看法,認為科學是多元發展的。\n 三、學生對科學理論的認識也漸趨「建構取向」。針對科學理論在「科學理論知識」、「科學理論探究方法」、「科學理論來源」、「科學理論與科學事業發展」以及「科學理論價值性」等五個陎向,期末時學生對於科學理論的認識逐漸呈現多元與建構的觀點。研究結果顯示,學生認為科學理論是可以從不同角度去進行探究,藉由不同觀點的研究方法或程序,它是可以被不斷翻新與修正的;每個人也都可以透過集體合作、討論、發想來形成新的科學理論概念。\n 四、從期末反思中發現學生的科學態度亦產生變化。學生了解到理論與想法的進步是需要經過不斷的修改與翻新。再者,學生也認知到理論與理論之間關係緊密,科學家、科學理論之間的不斷互動是促進科學理論演化的動力;最後,學生也瞭解到科學學習應秉持質疑、創新的態度,適時批判權威理論而不照單全收,並且應培養主動學習、勇敢懷疑的態度,以及應能提出自己的想法與他人激盪等,如此方能真正認識科學理論的本質,並有助於推動科學的進步。\n 本研究根據研究結果及發現,在科學教學與學習方陎提出下列六點建議:(1)擺脫記憶、背誦的科學學習方式;(2)儘量不給標準答案,強調學習者間腦力激盪;(3)建構式科學學習,融入科學史,讓學習者自我建構並認知科學知識;(4)創造互動與合作的知識建構環境;(5)教師應多引導想法的討論與激盪,刺激學生以多元觀點進行對話與知識翻新;(6)脫離制式、標準的教學程序,營建開放的學習環境並促進多元想法。
The purpose of this study was to help college students develop more informed and sophisticated scientific epistemological beliefs. Forty-two undergraduates who took a college course titled ―Introduction to Natural Sciences‖ participated in the study. An online collaborative knowledge building environment, enabled by a software program called Knowledge Forum, was provided for students’ knowledge work.\n Data primarily came from (1) Students’ online discourse: which was posted in the form of notes, recorded in a Knowledge Forum database, and was used to analyze students’ collaborative learning and knowledge building. (2) A questionnaire—View on Science and Education Questionnaire (VOSE): which was originally designed and validated by Chen (2006) and it was used to analyze the differences of students’ view of nature of science between the beginning and the end of the course. (3) A open-ended survey with regard to the nature of scientific theory: which was employed to triangulate the findings derived from the VOSE and was administered in the beginning and at the end of the course. (4) Students’ self-reflection on what they learned from this course. To analyze, quantitative statistics (e.g., ANOVA) was employed to explore students’ online activities. Additionally, an open-coding procedure was adapted to content-analyze students’ notes. There were four main findings as follows:\n (1) Students shared ideas constantly, developed connections among ideas, and worked collaboratively and closely with knowledge in Knowledge Forum (with mean\nnumber of notes posted being 14.5 and percentage of notes linked being 26.9%). Furthermore, there was an gradual increase in students’ online discourse as reflected by the density of network interaction (10.1 % in the beginning of the course vs. 16.6% at the end of the course). In addition, students served as explorers by reconstructing stories of natural science history in Knowledge Forum, in order to develop a deeper understanding of the process of scientific theory development. The findings suggest that students worked closely together in collaborative learning and interaction, and were able to build knowledge using multiple methods in Knowledge Forum.\n (2) Students also changed their view of nature of science. It was found that there were significant pre-post change between their view in the beginning and that at the end of the course, in terms of the following seven dimensions: ―tentativeness‖, ―nature of observations‖, ―scientific methods‖, ―theories and laws‖, ―use of imagination‖, ―validation of scientific knowledge‖, and ―subjectivity and objectivity‖. Overall, students’ view shifted from more positivism-oriented to more constructivism-oriented. It was found that towards the end of the course, students started to possess more multiplistic view of nature of science. Students thought that science is advanced by means of multiplistic ways with no standardized methods.\n (3) In terms of students’ view of scientific theory, it became more ―constructivism-oriented‖ and more multiplistic towards the end of semester, in terms of the following five dimensions: ―knowledge about scientific theory-building‖, ―method of scientific theory-building‖, ―source of scientific theory‖, ―scientific theory and science as an enterprise‖ and ―value of scientific theory‖. It was found that student thought that scientific theory is developed through inquisition from many perspectives. Scientific theory is falsifiable, rather than fixed knowledge entity, and it should not be associated with pre-determined research procedure and standardized answers. Scientific theory can be improved by collaboration discussion and use of imagination.\n (4) In terms of students’ self-reflection on what they learned from this course, it was found that students demonstrated better understanding that theories are improvable, and that it is important to relate one theory to another for the purpose of creating new knowledge. Moreover, students also realized that it is important to possess critical and creative attitude towards studying science.\n Building on the above results, this study made the following six suggestions: (1) science learning must go beyond memorization and rote learning; (2) science learning should avoid the pursuit of standardized answers and encourage idea brainstorming; (3) science teachers should promote more constructive way of science learning, try to integrate history of science into science teaching, and help learners construct their own understanding of science; (4) it is important to cultivate a more creative and collaborative learning environment; (5) science teachers should also help students learn how to work with ideas, discuss together, and solve conflicting views; and (6) science teachers should help create an open environment to promote multiple scientific views.
參考文獻: 中文部分
丁嘉琦(1999)。花蓮縣國小教師科學本質觀點之研究。國立花蓮師範學院國
民教育研究所碩士論文,未出版,花蓮。
李悅美(2002)。國民小學高年級學童科學本質觀之研究。台北市立師範學院
科學教育研究所碩士論文,未出版,台北市。
林陳涌(1995)。高中學生對科學本質了解之研究。NSC84-2511-S-003-
083,行政院國家科學委員會。
林陳涌 (1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4
(1),1-58。
邱明富(2003)。科學史融入教學以提升國小學童科學本質觀與對科學態度之
行動研究。國立屏東師範學院數理教育研究所碩士論文,未出版,屏東。
洪文東(1999)。科學的創造發明與發現。台北市,臺灣書店。
高慧蓮和蘇明洲(2000)。科學的本質與哲學觀的演進。屏東科學教育月刊,
12,2-15。
張巨青、吳寅華 (1994)。邏輯與歷史:現代科學方法論的嬗變。台北市:淑
馨出版社。
陸慧英(2003)。利用線上協作改變教育範式─以建構新知為教育目標與手
段。載於陳懷德、黃亮華(主編),邁向數位學習社會(161-171頁)。台北
市:遠流。
許玫理(1992)。我國國民中學自然科學教師科學哲學觀點之調查研究。國立
彰化師範大學科學教育研究所碩士論文,未出版,彰化。
張鳳琴(1994)。高雄地區公立高中學生對科學知識本質之看法。國立高雄師
範大學科學教育研究所碩士論文,未出版,高雄市。
郭重卲和許玫理(1992):從科學哲學觀點的演變探討科學教育的過去與未
來。彰化師範大學學報,3,531-560。
郭重卲(1996)。建構論:科學哲學的省思。教育研究雙月刊,49,16-23。
陳文言(2006)。以多媒體將科學史融入自然與生活科技課程對學生的科學本
質觀與科學態度之影響研究。國立新竹教育大學應用科學系碩士論文,未
出版,新竹市。
莊嘉坤(1995)。國小學童對科學的態度探討。八十四年度師範學院教育學術
論文發表會論文集,2,1-20。
黃鴻博(1998)。國民小學教師對科學本質信念之研究。中師數理學報,1,
189-221。
黃寶蓉 (2000)。科學本質在教與學的意涵之研究。國立高雄師範大學科學教
育研究所碩士論文,未出版,高雄市。
程樹德、傅大為、王道還、錢永祥(譯)(1994)。Thomas S. Kuhn(著)。
科學陏命的結構。台北市:遠流。
舒煒光、邱仁宗(1990)。當代西方科學哲學評述。台北市:水牛出版社。
詹志禹(1996)。認識與知識:建構論vs 接受觀。教育研究雙月刊,49,
25-38。
董庭豪(2009)。透過電腦輔助合作學習活動增進國小學童數學估算表現之研
究。國立新竹教育大學數位學習科技研究所碩士論文,未出版,新竹市。
謝薰靜(2005)。中小學教師對科學本質與科學史教學需求性的研究。國立台
中教育大學自然科學教育學系碩士論文,未出版,台中市。
蘇義賢(2008)。電腦模擬教學在高中生活科技之應用─以室內配線教學為
例。國立嘉義大學教育科技研究所碩士論文,未出版,嘉義市。
西文部分
Abd-El-Khalick, F., Bell, R. L., & Lederman, C. G. (1998).
The nature of science and instructional practice:
making the unnatural natural. Science Education, 82,
417-436.
Abd-El-Khalick, F., & Lederman, C. G. (2000). The influence
of history of science course on students’ views of
nature of science. Journal of Research in Science
Teaching, 37(10), 1057-1095.
Abimbola, I. O. (1983). The relevance of the ―new‖
philosophy of science for the science curriculum.
School Science and Mathematics, 83, 181-193.
Alters, B. J. (1997). Whose nature of science? Journal of
Research in Science Teaching, 34(1), 39-55.
Cleminson, A. (1990). Establishing an epistemological base
for science teaching in the light of contemporary
notions of the nature science and of how children learn
science. Journal of Research in Science Teaching, 27
(5), 429-445.
Criffiths, A. K., & Barman, C. R. (1995). High school
students’ views about the nature of science: Results
from three countries. School Science and Mathematics, 95
(5), 248-255.
Chen, G. D., Ou, K. L., C. C., & Liu, B. J., (2001).
Intervention and strategy analysis for web group-
learning. Journal of Computer Assisted Learning, 17(1),
58-72.
Chen, S. (2006). Development of an instrument to assess
views on nature of science and attitudes toward
teaching science. Science Education, 90(5), 803-819.
Driver, R., Leach, J., Millar, R., & Scott, P. (1996).
Young people`s image of science. Buckingham, UK: Open
University Press.
Harasim, L. M. (1993). Networks: Computers and
international communication. Cambridge, MA: MIT Press.
Harasim, L., Hiltz, S. R., Teles, L., & Turoff, M. (1995).
Learning networks: a field guide to teaching and
learning online: Mit Press.
Hoffman, J. L., Wu, H.-K., Krajcik, J. S., & Soloway, E.
(2003). The nature of learners` science content
understandings with the use of on-line resources.
Journal of Research in Science Teaching, 40(3), 323-346.
Hong, H. Y., Scardamalia, M., Messina, R., & Teo, C. L.
(2008). Principle-based design to foster adaptive use
of technology for building community knowledge. In G.
Kanselaar, V. Jonker, P.A. Kirschner, & F.J. Prins
(Eds.), International Perspectives in the Learning
Sciences: Cre8ing a learning world. Proceedings of the
Eighth International Conference for the Learning
Sciences – ICLS 2008, Vol. 1 (pp. 374-381). Utrecht,
the Netherlands: International Society of the Learning
Sciences, Inc.
Hong, H.-Y., & Sullivan, F. R. (2009). Towards an idea-
centered, principle-based design approach to support
learning as knowledge creation. Educational Technology
Research & Development, 57(5), 613-627.
Johnson, D. W., & Johnson, R. T. (1994). Learning together
and alone: cooperative, competitive, and
individualistic learning. Boston, MA: Allyn and Bacon.
Jonassen, D. H. (2000). Computers as Mindtools for Schools:
Engaging Critical Thinking (2nd ed.). Upper Saddle
River, N.J.: Merrill.
Katz, S., & Lesgold, A. (1993). Collaborative Problem-
Solving and Reflection in Sherlock II. Paper presented
at the Workshop on Collaborative Problem Solving:
Theoretical frameworks and Innovative systems,
Edinburgh.
Koschmann, T. (1996). Computer Supported Collaborative
Learning: theory and practice of an emerging paradigm.
New Jersey: Laurence Erlbaum.
Lederman, N. G. (1986). Relating teaching behavior and
classroom climate to change in students’ conceptions
of nature of science. Science Education, 70(1), 3-19.
Lederman, N. G. (1992). Students’ and teachers’
conceptions of the nature of science: A review of the
research. Journal of Research in Science Teaching, 29
(4), 331-359.
Marble, S. T, (1992). Student descriptions of the nature of
science. (Doctoral dissertation, University of Texas at
Austin). (University Microfilms NO AAC93-0227).
Nussbaum, J. (1989). Classroom conceptual change:
Philosophical perspectives. International Journal of
Science Education, 11, 530-540.
Owston, R. D. (1997). The world wide web: A technology to
enhance teaching and learning. Educational Researcher,
27-33.
Parker, R. (1984). Small-group cooperative learning in the
classroom. (ERIC No. 242065).
Proper, H., Wideen, M. F., & Ivany, G. (1988). World view
projected by science teachers: a study of classroom
dialogue. Science Education, 72(5), 547-560.
Pena-Shalf, J. B.,& Nicholls, C. (2004). Analyzing student
interactions and meaning construction in computer
bulletin board discussions. Computers and Education, 42
(3), 243-265.
Palmquist, B. C. & Finley, F. N. (1997). Preservice
teacher’s views of the science during a
postbaccalaureate science teaching program. Journal of
arch in Science Teaching, 34(6), 595-615.
Roach, L. E. & Wandersee, J. H. (1993). Short story
sience: Using historical vignettes as teaching tool. The Science Teacher, 60(6), 18-21.Roschelle, J., Tatar, D., Roschelle, J., Tatar, D., Chaudhury, S. R., Dimitriadis, Y., Patton, C., & DiGiano, C. (2007). Ink, Improvisation, and Interactive Engagement: Learning with Tablets. Computer, 40(9), 42-48.Savoraara, H. (2005). An exploration of students’ strategy use in inquiry-based computer-supported collaborative learning. Journal of Computer Assisted Learning, 21, 39-52.
Scardamalia, M., Bereiter, C., & Lamon, M. (1994). The CSILE project: Trying to bring the classroom into World 3. In K. McGilley (Eds.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 201-228). Cambridge, MA: MIT Press.
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a kowledge society (pp. 67-98). Chicago: Open Court.
Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In Encyclopedia of Education (2nd ed., pp. 1370-1373). New York: Macmillan Reference, USA.
Scardamalia, M. (2004). CSILE/Knowledge Forum®. In Education and technology: An encyclopedia (pp. 183-192). Santa Barbara: ABC-CLIO.
Scardamalia, M., &Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. Sawyer(Ed.), Cambridge Handbook of the Learning Sciences (pp.97-118). New York: Cambridge University Press.
Slavin, R. E. (1985). Team-Assisted Individualization: Combining Cooperative Learning and Individualized Instruction in Mathematics. In Slavin, R. E., Sharan, S., Kagan, Hertz-Lazarowitz, R., Webb, C.& Schmuck, R. (Eds). Learning to Cooperative, Cooperating to Learn (pp.177-209). New York: Plenum.
Smith, M. U., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83(4), 493-509.
Songer, N., & Linn, M. (1991). How do students’ views of science influence knowledge integration? Journal of research in science teaching, 28, 761-784.
Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29 (4), 409-421.
Suchin, V. (1993). Effect of research experience on teachers`` perceptions of the nature science (science training). Unpublished doctoral dissertation, University of Minnesota.
Strauss, A. L., & Corbin, J. (1990). Basics of qualitative research: grounded theory procedures and techniques. Newbury Park, CA: Sage Publications.
Stahl, G. (2000). A model of Collaborative Knowledge –Building. In B.Fishman & S. O’Connor-Divelbiss (Eds), Fourth International Conference of the Learning Sciences (pp.70-77). Mahwah, NJ: Erlbaum.
Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. Cambridge handbook of the learning sciences, form
http://www.cis.drexel.edu/faculty/gerry/cscl/CSCL_English.pdf
Suthers, D. (1998). Technical report: Computer Aided Education and Training Initiative. Pittsburgh: Learning Research and Development Center, University of Pittsburgh.
Sun, K. T., Lin, Y. C. & Yu, C. J. (2008). A study on learning effect among different learning styles in a Web-based lab of science for elementary school students. Computers & Education, 50, 1411-1422.
Tomlinson, H., & Henderson, W. (1995). Computer supported collaborative learning in schools: a distributed approach. British Journal of Educational Technology, 26(2), 131-140.
Tsai, C. C. (1998). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders. Science Education, 82(4), 473-789.
Tsai, C. C.,& Kuo, P. C. (2008). Cram school students’ conceptions of learning and learning science in Taiwan. International Journal of Science Education, 30(3), 353-375.
Teo Yiong-Hwee & Churchill, D. (2007). Using sentence opener to support students’ argumentation in an online learning environment. Educational Media International, 44(3), 207-218.
Wolfer, A. J., Robinson, J. B., Mason, S. L., Heppert, J. A., & Eills, J. D. (2001). Effect of problem-based inquiry laboratory experience on general chemistry students’ understandings of the nature of science. Paper presented at the National Association for Research in Science Teaching National Meeting, St. Louis, MO, March 2001.
描述: 碩士
國立政治大學
教育研究所
96152003
98
資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096152003
資料類型: thesis
Appears in Collections:學位論文

Files in This Item:
File SizeFormat
200301.pdf10.01 MBAdobe PDF2View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.