Please use this identifier to cite or link to this item:

Title: 時間刻度下偏動態算子的極大值定理
The maximum principles for the partial dynamic operators on time scales
Authors: 陳家盛
Chen, Chia Sheng
Contributors: 符聖珍
Chen, Chia Sheng
Keywords: 時間刻度
Date: 2010
Issue Date: 2011-10-05 14:39:37 (UTC+8)
Abstract: 在這篇論文裡,我們要討論的是在多維度的時間刻度下橢圓型動態算子和拋物型動態算子的極大值定理,並藉此得到一些應用。事實上,我們是將微分方程及差分方程裡的極大值定理推廣至所謂的動態方程中。
In this thesis, we establish the maximum principles for the elliptic dynamic operators and parabolic dynamic operators on multi-dimensional time scales, and apply it to obtain some applications. Indeed, we extend the maximum principles on differential equations and difference equations to the so-called dynamic equations.
Reference: [1]M. Protter, H. Weinberger,Maximum Principles in
Differential Equations,Prentice-Hall, New Jersey, (1967).
[2]H. Kuo, N. Trudinger,On the discrete maximum principle
for parabolic difference operators,Math. Model. Numer.
Anal. 27 (1993) 719-737.
[3]G. David, N.S. Trudinger,Elliptic partial differential
equations of second order,Berlin, New York: Springer-
Verlag, (1977).
[4]P. Stehlik, B. Thompson,Maximum principles for second
order dynamic equations on time scales,J. Math. Anal.
Appl. 331 (2007) 913-926.
[5]P. Stehlik,Maximum principles for elliptic dynamic
equations,Mathematical and Computer Modelling 51 (2010)
[6]R.P. Agarwal and M. Bohner,Basic calculus on time scales
and some of its applications,Results Math. 35 (1999) 3-
[7]M. Bohner and A. Peterson,Dynamic Equation on Time
Scales, An Introduction with Application,Birkhauser,
Boston (2001).
[8]M. Bohner and A. Peterson,Advances in Dynamic Equation
on Time Scales,Birkhauser, Boston (2003).
[9]B. Jackson,Partial dynamic equations on time scales,J.
Comput. Appl. Math. 186 (2006) 391-415.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
101401.pdf830KbAdobe PDF835View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing