Please use this identifier to cite or link to this item:

Title: 投射有限群表現之形變理論
Deformation Theory of Representations of Profinite Groups
Authors: 周惠雯
Chou, Hui Wen
Contributors: 余屹正
Yu, Yih Jeng
Chou, Hui Wen
Keywords: 投射有限群
Profinite groups
Universal deformations
Universal deformation rings
Zariski tangent space
Group cohomology
Date: 2012
Issue Date: 2013-02-01 16:53:18 (UTC+8)
Abstract: 在本碩士論文中, 我們闡述了投射有限群表現, 以及其形變理論。 我們亦特別研究這些表示在 GL_1 和 GL_2 之形變, 並且給了可表示化 的判定準則。 最後, 我們解釋相對應的泛形變環之扎里斯基切空間與 群餘調之關連, 並計算了 GL_1 的泛形變表現。
In this master thesis, we give an exposition of the deformation theory of representations for GL_1 and GL_2, respectively, of certain profinite groups. We give rigidity conditions of the fixed representation and verify several conditions for the representability. Finally, we interpret the Zariski tangent spaces of respective universal deformation rings as certain group cohomology and calculate the universal deformation for GL_1.
Reference: [1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[2] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939.
[3] J. W. S. Cassels and A. Fro ̈hlich (eds.), Algebraic Number Theory (2nd edition), London, United Kingdom, London Mathematical Society, 2010, Reprint of the 1967 original. MR 911121 (88h:11073)
[4] L. Clozel, M. Harris, and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. Inst. Hautes E ́tudes Sci. (2008), no. 108, 1–181, With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vigne ́ras.
[5] B. Conrad, F. Diamond, and R. Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 3, 521–567.
[6] B. de Smit and H. W. Lenstra, Jr. , Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 313–326.
[7] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. (2) 144 (1996), no. 1, 137–166.
[8] J.-M. Fontaine and B. Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78.
[9] A. Grothendieck, Technique de descente et th ́eor`emes d’existence en g ́eom ́etrie alg ́ebrique. II. Le th ́eor`eme d’existence en th ́eorie formelle des modules, Se ́minaire Bourbaki, vol. 5, Socie ́te ́ Mathe ́matique de France, 1995, pp. 369–390.
[10] A. Grothendieck and J. Dieudonne ́, El ́ements de G ́eom ́etrie Alg ́ebrique, Publ. Math. IHES,4 (1960), 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
[11] K. Haberlan, Galois Cohomology of Algebraic Number Fields, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, With two appendices by Helmut Koch and Thomas Zink.
[12] M. Harris, N.Shepherd-Barron, and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813.
[13] H. Hida, Galois representations into GL_2(Z_p[X]) attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613.
[14] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504.
[15] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture. II, Invent. Math. 178 (2009), no. 3, 505–586.
[16] M. Kisin, The Fontaine-Mazur conjecture for GL_2, J. Amer. Math. Soc. 22 (2009), no. 3, 641–690.
[17] M. Kisin, Lecture Notes on Deformations of Galois Representations, Clay Mathematics Institute 2009 Summer School on Galois Representations (University of Hawaii at Manoa, Honolulu, Hawaii), June 15 - July 10 2009.
[18] M. Kisin, Moduli of finite flat group schemes and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085–1180.
[19] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1998.
[20] B. Mazur, Deforming of Galois Representations, Galois Groups over Q (Y. Ihara, K. Ribet, and J.-P. Serre, eds.), Mathematical Sciences Research Institute Publications, no. 16, Springer-Verlag, 1987, pp. 385–437.
[21] B. Mazur, An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer-Verlag, New York, 1997, pp. 243–311.
[22] J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, vol. 322, Springer-Verlag, 1999.
[23] R. Ramakrishna, On a variation of Mazur’s deformation functor, Compositio Math. 87 (1993), 269–286.
[24] M. Schlessinger, Functors of Artin rings, Trans. A.M.S. 130 (1968), 208–222.
[25] J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, 1979.
[26] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, vol. 42, Springer-Verlag, New York, 1996.
[27] J.-P. Serre, Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, 1997.
[28] R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. Math. Inst. Hautes E ́tudes Sci. (208), no. 108, 183–239.
[29] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), no. 3, 553–572.
[30] J. Tilouine, Deformations of Galois representations and Hecke algebras, Published for The Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, 1996.
[31] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. 141(1995), no.3, 443–551.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
101401.pdf946KbAdobe PDF803View/Open

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing