Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/60334


Title: 台灣住宅部門熱泵系統之成本效益分析
Cost-Benefit Analysis of Residential Heat Pump System in Taiwan
Authors: 朱圃漢
Chu, Pu Han
Contributors: 許志義
Hsu, Jyh Yih
朱圃漢
Chu, Pu Han
Keywords: 熱泵系統
住宅部門
節能減碳
成本效益分析
淨現值
heat pump
residential section
energy saving and carbon emissions
cost-benefit analysis
net present value
Date: 2010
Issue Date: 2013-09-05 14:20:30 (UTC+8)
Abstract: 台灣為海島型國家,因自有能源貧乏,99%以上的能源仰賴國外進口。為確保能源供給之穩定與安全,除發展再生能源之外,提高能源終端使用效率為重要之解決手段。熱泵系統因其獨特之節能減碳效果,在歐美先進國家備受重視,極力推廣。基此,考量台灣氣候類型及居住型態,評估熱泵熱水系統的適用性及成本效益分析,爰為本研究之動機與目的。
為了彰顯應用熱泵系統在不同地區氣候條件與能源價格之差異,本研究將台灣劃分為12個地區,並且以電能、LPG桶裝瓦斯、NG管線瓦斯三種現有之住宅用熱水系統作為可供替代之選項,利用迴避成本(Avoided Cost)推估台灣各地區住宅部門改採熱泵熱水系統之成本效益。此外,參考歐美先進國家熱泵系統補助政策,以及台灣現有「太陽能熱水系統推廣獎勵措施」之政府政策補助方案,設定各相關參數,俾模擬政府補貼方案情境下之成本效益分析。
分析結果以淨現值(Net Present Value)、益本比(Benefit-Cost Ratio)及折現回收期(Discounted Payback Period )呈現,結論可從兩個觀點之檢定加以評估。其一、以「參與者檢定」評估是否有足夠的經濟誘因,促使住宅用戶裝設熱泵熱水系統。其二、以「總資源成本檢定」,評估推廣熱泵系統對於整體社會是否具有淨效益。
本研究中全台12個地區,若以熱泵系統取代電能熱水系統、LPG瓦斯熱水系統、NG瓦斯熱水系統三種既有設備,交叉比對之33個替代方案,由「參與者檢定」之結果顯示,所有替代方案之益本比均大於1.1;折現回收期最長達11.3年,最短僅3.2年。若模擬政府補助18,000名用戶採用熱泵系統,則「總資源成本檢定」之結果中,所有替代方案之益本比介乎1至1.73之間;折現回收期最長達14.9年,最短僅5.4年;住宅部門以熱泵替代現有電能、LPG瓦斯、NG瓦斯熱水系統至少可降低碳排放量每年2,707公噸。三種替代類別中以電能熱水系統替代方案益本比最高(介乎1.55至1.73);LPG瓦斯替代方案之益本比居次(介乎1.19至1.28);NG瓦斯替代方案益本比最低(介乎1.0至1.06)。全台12個地區考量環境溫度差異之影響以南投分區改採熱泵系統的益本比最高(電能替代1.73、LPG瓦斯替代1.28、NG瓦斯替代1.06),屏東分區的益本比為最低(電能替代1.55、LPG瓦斯替代1.19、NG瓦斯替代1.0)。
若考量熱泵系統市場滲透率,以熱泵取代NG瓦斯熱水系統之市佔率達5%、20%、50%時,台灣整體社會的淨現值分別為251百萬元、1,006百萬元與2,514百萬元,且每年可減少碳排放量27,169公噸、108,675公噸以及271,687公噸。
As an island country, 99% energy supply in Taiwan depends on importation due to the very limited endogenous energy. In order to maintain both energy security and stability, improving energy efficiency of consumer end-use is an important government policy. Heat pump systems have been widely applied and strongly promoted in Europe and United State for its uniquely energy saving and CO2 reducing capability. Therefore, the motivation of this study is to access the regional applicability of heat pump water heating system for Taiwan’s climate and residential building types by cost-benefit analysis method.

To demonstrate the regional difference of climatic conditions and energy prices heat pump application, Taiwan is divided in twelve regions with three kinds of alternative residential water heating systems (i.e. electric heating, LPG tank heating, and NG pipe heating). Under these conditions, we utilize the avoided cost method to access itemized costs and benefits of heat pump water heating systems in various regional families in Taiwan. In addition, referring to heat pump incentive scheme in advanced European countries and North America while considering solar water heating systems incentive policy in Taiwan, we also simulate variation of parameters (such as cash rebate subside, total residential heat pump user numbers )of heat pump system subsidy program.

The outcome of cost-benefit analysis is presented in a form as net present value (NPV), benefit-cost ratio (BCR), and discounted payback period (DP). The results could be analyzed by test from two different perspectives including Participant Test (PCT) from participant perspective and Total Resource Cost Test (TRC) from overall sociality perspective.

All of the 33 alternative programs constituted by 12 regions with electric , LPG and NG systems, for PCT, BCR, all 33 alternative programs are greater than 1.1; DP are between 3.2 to 11.3 years. For TRC, BCR, all 33 alternative programs are greater than 1 but less than 1.73; DP are between 5.4 to 14.9 years. Residential building adopting heat pump could reduce 2,707 tons carbon emissions annually. For the three types of alternative system, BCR of electric heating alternative program is the largest and NG alternative program being the least. For all of the 12 regions, BCR of Nantou region is the largest for adopting heat pump while BCR of Pingtung region is the smallest.

NPV of overall Taiwan with market penetration reaching 5%, 20% and 50% substitution rate from heat pump system to NG water heating system are 251 million NT$, 1,006 million NT$, and 2,514 million NT$ respectively. Carbon emissions reduce 27,169 tons, 108,675 tons and 271,687 tons annually.
Reference: 中文文獻
1. 工研院,2011,節能標章網站http://www.energylabel.org.tw/ (accessed
on 2011/7/7)
2. 王輔仁、郭清山、蔡明樺、邱文志,2010,運用熱泵熱水系統取代電熱
加熱系統之性能量測與驗證分析,中華冷凍空調,40期,25-33頁。
3. 中油公司,2010,中油燃料類產品簡介,台灣中油公司網站
http://www.cpc.com.tw/big5/content/index.asp?pno=41 (accessed on 2011/7/8)
4. 中央氣象局,2011,中央氣象局網站http://www.cwb.gov.tw/V7/
(accessed on 2011/7/7)
5. 台電公司,2011,台灣電力公司99年統計年報,台灣電力企劃處編印。
6. 宋炎明,2005,熱泵系統應用於溫室內游泳池之節能分析,國立台北科
技大學冷凍空調工程學系碩士論文。
7. 李居芳,2008,臺灣地區家用熱泵熱水裝置性能實驗研究,元智大學機
械工程學系碩士論文。
8. 范馥婷,2000,太陽能熱水系統在多層樓建築之應用,淡江大學水資源及環
境工程學系碩士論文。
9. 高志宇,2009,太陽能結合熱泵應用於溫水游泳池之佳化分析,國立台北科
技大學冷凍與低溫科技研究所碩士論文。
10. 翁志博,2009,台灣發展太陽能加熱系統之環境與經濟效益評估,國立交通
大學工學院永續環境科技學程碩士論文。
11. 梁啟源,2005,台灣空氣汙染之社會外部成本與台電公司空汙防治成本效益
分析,台電工程月刊,第681期,26-39頁。
12. 許志義、黃國暐,2010,台灣能源需求面管理成本效益分析之應用,中華民
國能源經濟學會99年學術研討會論文。
13. 張鈺炯、楊錞忠,2006,二氧化碳熱泵技術簡介,冷凍與空調,第37期,
52-60頁。
14. 張克勤,2008,太陽能熱水系統補助作業與成效調查研究計畫 (第一年度),
經濟部能源局。
15. 張克勤,2009,太陽能熱水系統補助作業與成效調查研究計畫 (第二年度),
經濟部能源局。
16. 黃秉鈞,2007,我國熱泵發展現況與未來趨勢,中華水電冷凍空調,第6期,
88-90頁。
17. 經濟部能源局,2010,中華民國99年能源統計手冊,經濟部能源局。
18. 經濟部能源局,2010,中華民國九十九年能源平衡表,經濟部能源局編印。
19. 經濟部能源局,2011,公用天然氣事業管理系統網站
https://web2.moeaboe.gov.tw/npgweb/ (accessed on 2011/7/7)
20. 經濟部能源局,2011,油價資訊管理與分析系統網站
http://www.moeaboe.gov.tw/oil102/ (accessed on 2011/7/7)
21. 綠基會,2006,熱泵熱水系統Q&A節能技術手冊,財團法人台灣綠色生產力
基金會節約能源中心編印。
22. 綠基會,2007,熱水加熱系統汰換為熱泵系統之節能績效量測與驗證方法(熱
泵M&V參考範本),財團法人台灣綠色生產力基金會節約能源中心報告。
23. 廖建順、韋宗楒,2009,小型空調機市場發展趨勢簡介,冷凍空調&能源科技,
第57期,44-59頁。
24. 鄭維嶽、韋宗楒,2008,北美洲熱泵市場的概況,中華水電冷凍空調,
第22期,56-62頁。
25. 鄭維嶽、廖建順,2008,亞洲和太平洋地區熱泵技術概況,中華冷凍空調,
第24期,54-63頁。
26. 鄭維嶽、林師培,2009,歐洲熱泵的現況和趨勢,中華水電冷凍空調,
第26期,25-35頁。
27. 盧誌銘、蔡妙姍,2002,我國能源使用溫室氣體減量成本評估,2002環境資
源經濟、管理暨系統分析學術研討會論文集(B),158-202頁。
28. 環保署,2008,全國性排放清冊TEDS7.0,行政院環保署編制。


外文文獻
1. AHRI, 2011. Air-Conditioning, Heating, and Refrigeration Institute
website http://www.ahrinet.org/central+air+conditioners+and+air_source+heat+pumps+historical+data.aspx (accessed on 2011/7/7)
2. Baylon, D., Strand, S., Davis, B., Robison, D., Kruse, E., 2005.
Analysis of Heat Pump Installation Practices and Performance. Heat Pump Working Group.
3. Chen, T.Y., Yu, O.S., 1997. Performance Evaluation of Selected U.S.
Utility Commercial Lighting Demand-Side Management Programs.
Energy Engineering, Volume 94, No.4
4. California Public Utilities Commission 2001. California Standard
Practice Manual: Economic Analysis of Demand-Side Management Programs and Projects. CPUC.
5. Canada BC, 2011. Canada British Columbia LiveSmartBC website
http://www.livesmartbc.ca/attachments/LiveSmartHomeIncentives14Apr2011.pdf (accessed on 2011/6/22)
6. DECC, 2010. Renewable Heat Incentive. Department of Energy and
Climate Change.
7. EIA, 2011. U.S. Energy Information Administration website
http://www.eia.gov/cneaf/solar.renewables/page/ghpsurvey/ghpssurvey.html (accessed on 2011/7/7)
8. Energy Star 2011. Energy Star website
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=EP (accessed on 2011/7/7)
9. Forsén, M. Nowak, T., 2009. Outlook 2009 European Heat Pump
Statistic. EHPA.
10. Hughes, P.J., 2008. Geothermal (Ground-Source) Heat Pumps: Market
Status, Barriers to Adoption, and Actions to Overcome Barriers. ORNL/TM-2008/232. Oak Ridge, TN: Oak Ridge National Laboratory.
11. Hackel, S.P.E., 2009. Ten year update: Emissions and Economic
Analysis of Geothermal Heat Pump in Wisconsin. Energy Center of Wisconsin Report.
12. HPC, 2009. Heat pump market growing fast. IEA Heat Pump Newsletter.
Volume 27, No.1/2009.
13. HPC, 2011. The Swedish people confirms its love for heat pumps.
IEA Heat Pump Newsletter. Volume 29. No.2/2011.
14. HPC, 2011. IEA Heat Pump Center website
http://www.heatpumpcentre.org/en/aboutheatpumps/howheatpumpsachieveenergysavings/Sidor/default.aspx (accessed on 2011/7/7)
15. JRAIA, 2009. 社団法人日本冷凍空調工業会 website
http://www.jraia.or.jp/frameset_p_heatpump.html (accessed on 2011/6/22)
16. Liu, X., 2010. Assessment of National Benefits from Retrofitting
Existing Single-Family Homes with Ground Source Heat Pump Systems. Resource for The Future Backgrounder.
17. National Action Plan for Energy Efficiency, 2008. Understanding
Cost-Effectiveness of Energy Efficiency Programs: Best Practices, Technical Methods, and Emerging Issues for Policy-Makers. Energy and Environmental Economics. Inc.
18. Nowak, T., 2010. Heat Pump incentive schemes: Experiences from EU
Member States. EHPA.
19. SEAI, 2011. Sustainable Energy Authority of Ireland website
http://www.seai.ie/Grants/GreenerHomes/ (accessed on 2011/6/22)
20. U.S. DOE, 2011. DOE Energy Efficiency & Renewable Energy website
http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12610 (accessed on 2011/7/7)
Description: 碩士
國立政治大學
經濟學系
98258018
99
Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098258018
Data Type: thesis
Appears in Collections:[經濟學系] 學位論文

Files in This Item:

File SizeFormat
801801.pdf1954KbAdobe PDF333View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing