Please use this identifier to cite or link to this item:

Title: A Knowledge-Evolution Strategy Based on Genetic Programming
Authors: Chen, Chuen-lung;Kuo, Chan-Sheng;Hong, Tzung-Pei
Contributors: 資管系
Date: 2008
Issue Date: 2015-06-17 17:20:19 (UTC+8)
Abstract: Knowledge evolution is an important issue in knowledge management since enterprises face keen competition and need to keep the latest knowledge with time in an organization. In this paper, we proposed a GP-based knowledge-evolution framework to search for a good integrated classification tree with different evolving time points. The proposed approach can learn the evolving knowledge, integrating original and new knowledge, to deal properly with the organizational need for updating the latest knowledge as time goes on in a dynamic environment. In addition, we developed the initial population, consisting of four proportions, to accomplish suitable diversity and thus raise the search range as well as next learning efficiency in the evolutionary process.
Relation: International Conference on Hybrid Information Technology - ICHIT
Data Type: conference
DOI 連結:
Appears in Collections:[資訊管理學系] 會議論文

Files in This Item:

File Description SizeFormat

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing