Please use this identifier to cite or link to this item:

Title: LANDER表中之缺項
Missing entries in Lander's Table
Authors: 姚焱堯
Contributors: 陳永秋
Date: 1990
Issue Date: 2016-05-03 14:17:28 (UTC+8)
Abstract: 在一般的交換群G 中,是否存在參數為(v, k,λ)的差集D. 是組合設計理論中廣被探討的一項重要課題。對於差集D存在的必要條件,迄今已有眾多的討論,舉其要者有:
Lander's table contains purportedly 25 missing entries. However, 4 more entries should be considered open. We update Lander's table which covers all the 29 missing
Reference: [Arl] K. T. Arasu, (81,16,3) abelian difference sets do not exist, J. of Combinatorial Theory, Series A 43, 350-353, 1986.
[Ar2] K. T. Arasu, More missing entries in Lander's table could be filled, Arch. Math., Vol. 51, 188-192, 1988.
[ADJP] K. T. Arasu, J. Davis, D. Jungnickel and A. Pott, A note on intersection numbers of difference sets, European Journal of Combinatorics, Vol.11, 95-98, 1990.
[AR] K. T. Arasu and D. K. Ray-Chaudhuri, Multiplier theorem for a difference list, Ars Combinatoria 22, 119-137, 1986.
[AS] K. T. Arasu and D. L. Stewart, Certain implications of the multiplier conjecture, JCMCC 3, 207-211, 1988.
[BJL] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, 1986.
[Boz] Z. Bozikov, Abelian Singer groups of certain symmetric block designs, Radovi Math. 1, 247-253, 1985.
[Hal] M. Hall, Combinatorial Theory, 2nd edition, John Wiley & Sons,1986.
[Jun] D. Jungnickel, Design Theory: An update, Ars Combinatoria 28,129-199, 1989.
[Lan] E. S. Lander, Symmetric Designs: An algebraic approach, Cambridge University Press, 1983.
[Mc] R. L. McFarland, Difference sets in abelian groups of order 4p2,Mitteilungen des Maihemaiischen Seminars Giessen, 1989.
[MR] R. L. McFarland and B. F. Rice, Translates and multipliers of abelian difference sets, Proc. AMS. , Vo1.68, No.3, 375-379, 1978.
[Pot] A. Pott, Applications of the DFT to abelian difference sets, Arch. Math,Vol.51, 283-288, 1988.
Description: 碩士
Source URI:
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat

All items in 學術集成 are protected by copyright, with all rights reserved.

社群 sharing