Please use this identifier to cite or link to this item: https://ah.nccu.edu.tw/handle/140.119/90574


Title: SOME PERMUTATION BINOMIALS and WEAK CARLITZ'S CONJECTURE
Authors: 黃培琨
Contributors: 陳永秋
黃培琨
Date: 1989
Issue Date: 2016-05-04 14:31:21 (UTC+8)
Abstract: 論文提要內容:
壹 引言.
近年來,訊號傳送的途徑,已擺脫了傳統上著重管線傳送的優勢;有愈來愈多的訊號彌漫在廣闊的空間裡,而這種無線式的傳送所需面臨的問題是:不具有排他性.任何有接收器材的非原始接收者都可以截聽到訊息,由此因應而生的保密技術格外受矚目.密碼學(Cryptography)便是滿足此需要的學問.本論文所探討的排列多項式(Permutation Polynomial)是密碼學中重要的工具之一.
貳 論文主體.
所謂排列多項式,即是佈於代數體上的多項式,把此多項式當成函數而作用於代數體(Field)上,如果此函數據有一對一的性質,則是排列多項式.即f(x)=a_0+a_1 x1+⋯+a_n xn ϵ Fq[X] 且f(a)≠f(b),a,bϵFq,a≠b.在論文中,介紹先進學者對排列多項式的認識.如:Lagrange’s interpolation是利用函數值來描繪多項式.著名的學者Carlitz,利用特殊多項式來合成出排列多項式,論文中有更進一步的合成法提出.而Hermite跟Dickson學者則提出f^t函數其冪次的變化情形,來判別排列多項式之是否,是最通俗的判別理論.
此外,由吾人所蒐集的資料中發現,在祇有兩項的多項式中,被發現到其他更簡捷快速的判別方法,故二項式的多項式的探討是本論文的第一主題.對於xk+bxJ ϵ Fq[X],給予固定類型的q,k,j情形下,祇須檢定b是否具特殊性質就可決定是否為排列多項式,這是一種方法,另有學者並不固定q,k,j,反而從q,k,j數字下手,找尋出某種關連性,其結果使得係數b,只有當b=0時才有機會是排列多項式,剩下單項式的判別過程,就很容易了.上述兩方法本論文網羅大部份有關論文,綜合各家之長,並適當給予不同於原作者的新觀點證明方法.
至於本論文第二主題是著名的Carlitz's conjecture.此預測敘述:對於任何具有最高冪次是偶數的多項式,必定存在一個自然數k,使得給定的代數體,其元素各數只要超過k,則此多項式必定不是排列多項式.此預測當degree n=10,12,14 and 2^m時已被證實為真.本論文僅就n=2^m,做系統地探討及重新證明.另外由[2],[8]和[9]中,不難發現在特殊多項式族的限制之下,自然數k存在的機率更大,甚至可給出一個bound.故本論文提出weak Carlitz’s conjecture的概念;至於bound的問題:如多項式族{x^o+ax^J ∣j=0,1,2,3,4,5,6,7}.由[2]及[3]幾乎可得到最小之bound,可惜仍功虧一簣.最後,本論文提供估算bound的一個方法,以改善[8]中之bound.
參 結語.
本論文所論的兩主題,對於佈於代數體上的多項式是否為排列多項式,在判別的過程上應有相當的助益才是
Reference: References
[1] L. Carlitz, Permutations in a finite field,Acta Sci.Math. Szeged, 24 (1963) 196-203.
[2] S. R. Cavior, A note on octic permutation polynomials,Math.Comp.,17(}963)450-452.
[3] W. S . Chou , Binomial permutations of finite fields,Bull.Austral.Math.Soc. ,Vol.38 (1988) 325-327 .
[4] D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke Math.J., 34 (1967)293-305.
[5] H. Lausch and W. Nbbauer,Algebra of Polynomials,North-Holland, Amsterdam, 1973.
[6] R. Lidl and C .L. Mullen, When does a polynomial over a finite field permute the elements of the field? The American Math.Monthly, Vol.95 No.3 (1988) 243-246.
[7] R. Lidl and H. Niederreiter,Finite fields,Encyclopedia Math.Appl.,Vol.20.Addison-Wesley,Reading,Mass 1983 (now distributed by Cambridge Univ. Press).
[8] R. A. Mollin and C. Small, On permutation polynomials over finite fields, Internat. J. Math. and Math. Sci.,10(1987) 535-544.
[9] H. Niederreiter and K. H. Robinson, Complete mappings of finite fields,J. Austral. Math. Soc.,Ser. A 33 (1982)197-212.
[10] W. M. Schmidt, Equations over Finite Fields (Lecture Note in Math., Vol.536, Springer-Verlag, Berlin-Heidelberg-New York, 1976 ).
[11] Daqing Wan, On a conjecture of Carlitz, J. Austral. Math. Soc., Ser. A 43 (1987) 375-384.
Description: 碩士
國立政治大學
應用數學系
Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002005818
Data Type: thesis
Appears in Collections:[應用數學系] 學位論文

Files in This Item:

File SizeFormat
index.html0KbHTML257View/Open


All items in 學術集成 are protected by copyright, with all rights reserved.


社群 sharing