Please use this identifier to cite or link to this item: https://ah.lib.nccu.edu.tw/handle/140.119/90578
DC FieldValueLanguage
dc.contributor.advisor蔡隆義zh_TW
dc.contributor.author吳舜堂zh_TW
dc.creator吳舜堂zh_TW
dc.date1989en_US
dc.date.accessioned2016-05-04T06:31:30Z-
dc.date.available2016-05-04T06:31:30Z-
dc.date.issued2016-05-04T06:31:30Z-
dc.identifierB2002005822en_US
dc.identifier.urihttp://nccur.lib.nccu.edu.tw/handle/140.119/90578-
dc.description碩士zh_TW
dc.description國立政治大學zh_TW
dc.description應用數學系zh_TW
dc.description.abstract中文摘要\r\n在本文中,吾人主要在討論二階橢圓形的積分微分方程之存在解及數值解的問題,而其形式如下所示,\r\n(1.1) u\"=f(x,u)+∫_0^1▒k(x,t,u(t))dt,0<x<1,\r\n u(0)=u(1)=0.\r\n和\r\n(1.2) ∆u=f(x,u)+∫_Ω▒〖k(x,t,u(t))dt,in Ω〗,u=0 on ∂Ω. \r\n在此Ω是在一個R^n(n≧2)中的有界區域,而這區域具有平滑的邊界,且∆代表n維的Laplace運算子.\r\n在第一章中,吾人用Leray-Schauder degree定理來證(1.1)的存在解,而後由變分法(Variational method),可以把(1.1)變為一組非線性的積分微分方程式,然後藉著同倫法(Homotopy method)來解此非線性的方程.最後可得在某個norm下,當h趨近於零時,真實解與數值解的收斂速度是最好的.我們將給予幾個例子來印證理論的結果.\r\n在第二章中,首先經由[11]的結果來證明(1.2)的存在解,然後如同在第一章中討論的,給予一個適當的在h趨近於零時,可得到真實解與數值解的誤差會趨近於零.而最後,我們用幾個例子來確認理論的結果.\r\n在第三章中,吾人討論一個非線性的積分微分方程式如下所示,\r\n(1.3) ∆u=∅(x,u,K(u)) in Ω.\r\n在此K(u)是某個非線性的積分運算子.\r\n蔡[12]討論(1.3)藉由Leray-Schauder degree定理.近來有一個 mixed monotony的方法,對於邊界值的問題且當函數沒有任何遞增或遞減的性質時,此方法可造出一個收斂的單調數列收斂到唯一解.在此,我們創出一個新的方法,不需要去造單調的數列,而是藉著fixed point定理和微分不等式的技巧來證其存在解.zh_TW
dc.description.tableofcontentsCONTENT\r\nChapter 0: Introduction………1\r\nChapter 1: A single nonlinar integro-differential equation of one-dimension\r\nSection 1: Introduction………4\r\nSection 2: A priori bound of the solutions………7\r\nSection 3: Existence and Uniqueness………12\r\nSection 4: Variational formula………23\r\nSection 5: Convergence………29\r\nSection 6: Piecewise-polynomial subspace………35\r\nSection 7: Numerical experiments………38\r\nChapter 2: A single nonlinear integro-differential equation of n-dimension\r\nSection 1: Introduction………46\r\nSection 2: A priori bound of the solutions………49\r\nSection 3: Existence and Uniqueness………5l\r\nSection 4: Variational formula………56\r\nSection 5: Convergence………59\r\nSection 6: Piecewise-polynomial subspace………65\r\nSection 7 Numerical experiments………67\r\nChapter 3 The solvability of a system of nonlinear integro-differential equations………72\r\nREFERENCES………84zh_TW
dc.source.urihttp://thesis.lib.nccu.edu.tw/record/#B2002005822en_US
dc.titleNumerical Solutions of Integro-Differential Equationsen_US
dc.typethesisen_US
dc.relation.referenceREFERENCES\r\n[l] V. HUSTON and J. S. PYM ., Application of Functional Analysis and Operator Theory, Academic Press. London, 1980 .\r\n[2] L. T. WATSON and L. R. SCOTT,Solving Galerkin Approximations to Nonlinear two-point Boundary Value Problem by a Globally Convergent Homotopy Method. SIAM J. SCI. STAT. COMPUT ., 5(1987) . pp 768-789\r\n[3] HARDY,G. H., J. E. LITTLEWOOD,and G.P?LYA. Inequalities,2nded. Cambridge : Cambridge University Press 1952 .\r\n[4] J. T. ODEN. and G. F. CAREY, Finite Elements Mathematical Aspects. vol 2, Prentice-Hall,Englewood Cliffs.N. J., 1981\r\n[5] D. GILBARG N. S. TRUNDINGER. Elliptic Diffrential Equations of Second Order. Springer-Verlag: Berlin, 1977.\r\n[6] L. T. WATSON, A Globally Convergent Algorithm For Computing Fixed Points of C2 Maps, Appl. Math.Comput. 5(1979),PP 297-311.\r\n[7] L. T. WATSON. An Algorithm That Is Globally Convergent with Probability One For A Class of Nonlinear two-point Boundary Value Problem. SIAM J . Numer. Anal.,16(1979) .PP 394-401\r\n [8] L. T. WATSON, Solving Finite Difference Approximations to Nonlinear two-point Boundary Value Problems By a Homotopy Method, SIAM J. SCI. STAT. Comput,1(1980), pp 467-480.\r\n[9] T. Y. LI., Lectures on The Numerical Methods of Finding Solutions of System of Nonlinear Equations,` preprint 1983\r\n[10] L. F. SHAMPINE and M. K. GORDON, Computer Solution of Ordinary Differential Equations The Initial Value Problems, W. H. Freeman, San Francisco, 1975.\r\n[11] V. P. POLITJUKOV, On The Theory of Upper and Lower Solutions and The Solvability of Quasilinear Integro-Differential Equations. Math.Ussr.Sbornik, 35(1979), pp\r\n499-507.\r\n[12] LONG-YI TSAI , On The Solvability of Nonlinear Integro-differential Operators, Chinese J. of Mathematics, vol 11, No.1. 1983 , pp 75-84 .\r\n[13] K. SCHMITT, B. V. P. For Quasilinear Second Order Elliptic Equations, Nonlinear Analysis Theory Method and Applications, 2(1978), pp 268-309 .\r\n[14] N. M. TEMME (ed) , Nonlinear Analysis, vol 2,Mathematisch Centrum, Amsterdam, 1976.\r\n[15] R. WAIT and A. R. MITCHELL,Finite Element Analysis and Applications,John Wiley & Sons,1985.\r\n[16] M. KHAVANIN and V. LAKSHMIKANTHAM, The Method of Mixed Monotony and Second Order Boundary Value Problems . J. of Mathematical Analysis and Applications. 120(1986). Pp 737-744 .\r\n[17] V. LAKSHMIKANTHAM, The Method of Mixed Monotony and Second Order Integro-Differential Systems, Applicable Analysis, 28 (1988), pp 199-206 .zh_TW
item.grantfulltextopen-
item.openairetypethesis-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
Appears in Collections:學位論文
Files in This Item:
File SizeFormat
index.html115 BHTML2View/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.