學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 燃燒熱能模型數值近似法之研究
Numerical Approximation In a Model For Thermal Ignition
作者 陳健在
Chern, Jiann Tzay
貢獻者 蔡隆義
Tsai, Long Yei
陳健在
Chern, Jiann Tzay
關鍵詞 有限元素法
數值近似
存在性
誤差估計
finite element method
numerical approximation
existence
error estimate
日期 1994
上傳時間 29-四月-2016 16:32:06 (UTC+8)
摘要   本文主旨是在使用有限元素法(包括第一、第二、第三限元素法)對一個燃燒熱能模型之邊界值微分方程式,求其數值近似。
  The main topic of this paper is to usee the finite element methods (contain F.E.1, F.E.2, and F.E.3) to find the numerical approximation of a model for thermal ignition. First, we obtain a system of equations for those methods. And then, we analyse the existence and the error estimate of solutions with each method. At last, we give an example to discuss those results and graph them. In a word, from those equations or graphs which are given in this paper, we will get the numerical solution and the number of solutions.
描述 碩士
國立政治大學
應用數學系
80155010
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002003897
資料類型 thesis
dc.contributor.advisor 蔡隆義zh_TW
dc.contributor.advisor Tsai, Long Yeien_US
dc.contributor.author (作者) 陳健在zh_TW
dc.contributor.author (作者) Chern, Jiann Tzayen_US
dc.creator (作者) 陳健在zh_TW
dc.creator (作者) Chern, Jiann Tzayen_US
dc.date (日期) 1994en_US
dc.date.accessioned 29-四月-2016 16:32:06 (UTC+8)-
dc.date.available 29-四月-2016 16:32:06 (UTC+8)-
dc.date.issued (上傳時間) 29-四月-2016 16:32:06 (UTC+8)-
dc.identifier (其他 識別碼) B2002003897en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/88729-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 80155010zh_TW
dc.description.abstract (摘要)   本文主旨是在使用有限元素法(包括第一、第二、第三限元素法)對一個燃燒熱能模型之邊界值微分方程式,求其數值近似。zh_TW
dc.description.abstract (摘要)   The main topic of this paper is to usee the finite element methods (contain F.E.1, F.E.2, and F.E.3) to find the numerical approximation of a model for thermal ignition. First, we obtain a system of equations for those methods. And then, we analyse the existence and the error estimate of solutions with each method. At last, we give an example to discuss those results and graph them. In a word, from those equations or graphs which are given in this paper, we will get the numerical solution and the number of solutions.en_US
dc.description.tableofcontents 序論-----i
     中文摘要-----ii
     Abstract-----iii
     Content
     1. Introduction-----1
     2. Previous Results-----4
       2-1 The Gelfand form-----4
       2-2 The perturbed Gelfand form-----5
       2-3 The finite difference method-----7
     3. Some Finite Element Methods-----16
       3-1 Finite elements without numerical integration-----17
       3-2 Finite elements with numerical integration-----17
       3-3 The Noumerov Scheme by starting from a finite elements without numerical integration-----18
     4. Approximation Results of Finite Element Methods-----20
       4-1 F.E.1 method-----24
       4-2 F.E.2 method-----29
       4-3 F.E.3 method-----32
     5. Example-----35
     References-----44
     Index 1. Notations-----46
     Index 2. Graphs-----47
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002003897en_US
dc.subject (關鍵詞) 有限元素法zh_TW
dc.subject (關鍵詞) 數值近似zh_TW
dc.subject (關鍵詞) 存在性zh_TW
dc.subject (關鍵詞) 誤差估計zh_TW
dc.subject (關鍵詞) finite element methoden_US
dc.subject (關鍵詞) numerical approximationen_US
dc.subject (關鍵詞) existenceen_US
dc.subject (關鍵詞) error estimateen_US
dc.title (題名) 燃燒熱能模型數值近似法之研究zh_TW
dc.title (題名) Numerical Approximation In a Model For Thermal Ignitionen_US
dc.type (資料類型) thesisen_US