dc.contributor.advisor | 丁兆平 | zh_TW |
dc.contributor.advisor | Ting,Chao Ping | en_US |
dc.contributor.author (作者) | 楊玉韻 | zh_TW |
dc.contributor.author (作者) | Yang,Yu Yun | en_US |
dc.creator (作者) | 楊玉韻 | zh_TW |
dc.creator (作者) | Yang, Yu Yun | en_US |
dc.date (日期) | 1993 | en_US |
dc.date.accessioned | 29-四月-2016 16:43:49 (UTC+8) | - |
dc.date.available | 29-四月-2016 16:43:49 (UTC+8) | - |
dc.date.issued (上傳時間) | 29-四月-2016 16:43:49 (UTC+8) | - |
dc.identifier (其他 識別碼) | B2002004192 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/89017 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計學系 | zh_TW |
dc.description (描述) | G80354005 | zh_TW |
dc.description.abstract (摘要) | 在工業、農業、或醫藥界的實驗中,經常必須拿數個不同的試驗處理(test treatments)和一個已使用過的對照處理(control treatment)比較。所謂的試驗處理可能是數組新的儀器、不同配方的新藥、或不同成份的肥料等。以實驗新藥為例,研藥者想決定是否能以新藥取代原來所使用的藥,故對v種新藥與原藥做比較,評估其藥效之差異。為了降低實驗中不必要的誤差以增加其準確性,集區設計成為實驗者常用的設計方法之一;又因A式最適設計是我們欲估計的對照處理效果(effect)與試驗處理效果之差異之估計值最小的設計,基於此良好的統計特性,我們選擇A式最適性為評判根據。古典的A式最適性並未將對照處理與試驗處理所具備的先前資訊(prior information)加以考慮,以上例而言,我們不可能對原來使用的藥一無所知,經由過去的實驗或臨床的反應,研藥者必已對其藥性有某種程度的了解,直觀上,這種過去經驗的累積,影響到實驗配置上,可能使對照處理的實驗次數減少,相對地可對試驗處理多做實驗,設計遂更具意義。因而本文考慮在k>v的情形下之貝式最適集區設計,對先前分配施以某種限制,依據準確設計理論(exact design theory),推導單項異種消除模型(one- way elimination of heterogeneity model)之下的貝氏A式最適設計與Γ- minimax最適設計,使Majumdar(1992)的結果能適用於完全集區設計。此種設計對先前分配具有強韌性,即當先前分配有所偏誤,且其誤差在某一範圍內時,此設計仍為最適設計或仍可維持所謂的高效度(high efficiency)。本文將列舉許多實例以說明此一特性。 We consider the problem of comparing a set of v test treatments simultaneously with a control treatment when k>v. Following the work of Majumdar(1992), we use exact design theory to derive Bayes A-optimal designs and optimal Γ-minimax designs for the one-way elimination of heterogeneity model. These designs have the same properties as of Bayes A-optimal incomplete block designs. We also provide several examples of robust optimal designs and highly efficient designs. | zh_TW |
dc.description.tableofcontents | ACKNOWLEDGMENTS‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ii CONTENTS‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧iii LIST OF TABLES‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧iv ABSTRACT‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ vi SECTION PAGE 1. INTRODUCTION‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1 2. PRELIMINARIES‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 5 3. ORTIMAL DESIGNS‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 11 4. ROBUSTNESS AND APPROXIMATION‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 19 5. EXAMPLES‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31 REFERENCES‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ vii | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#B2002004192 | en_US |
dc.subject (關鍵詞) | 集區設計 | zh_TW |
dc.subject (關鍵詞) | A式最適設計 | zh_TW |
dc.subject (關鍵詞) | 貝氏實驗設計 | zh_TW |
dc.subject (關鍵詞) | BTB設計 | zh_TW |
dc.subject (關鍵詞) | 強韌設計 | zh_TW |
dc.subject (關鍵詞) | 近似最適設計 | zh_TW |
dc.subject (關鍵詞) | Block designs | en_US |
dc.subject (關鍵詞) | A-optimal designs | en_US |
dc.subject (關鍵詞) | Bayes experimental designs | en_US |
dc.subject (關鍵詞) | BTB designs | en_US |
dc.subject (關鍵詞) | robust designs | en_US |
dc.title (題名) | 當 k>v 之貝氏 A 式最適設計 | zh_TW |
dc.title (題名) | Bayes A-Optimal Designs for Comparing Test Treatments with a Control When k>v | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | Cheng.C.S. and Wu. C.F.(1980). Balanced Repeated Measurements Designs. The Annals of Statistics 8 1272-1283. Cheng.C.S.. Majumdar. D.. Stufken. J.. and Türe. T.E.(1988). Optimal steptype designs for comparing test treatments with a control. Journal of the American Statistical Association 83 477-482. Giovagnoli.A. and Verdinelli. I. (1983). Bayes D-optimal and E-optimal block desigus. Biometrika 70 695-706. Giovagnoli. A.and Verdinelli.I.(1985).Optimal block designs under a hierarchical linear model. In Bayesian Statistics 2 (J.M. Bernardo. M.H. DeGroot. D. V. Lindly and A.F.M.Smith.eds.) 655-662. North –Holland. Amsterdam. Hedayat. A.S.. Jacroux. M. and Majundar. D. (1988). Optimal designs for comparing test treatments with controls. Statistical Science 3 462-491. Jacroux.M.and Majumdar. D.(1989). Optimal block designs for comparing test treatments with a control when k > r. Journal of Statistical Planning and Inference 23 381-396. Majumdar. D. (1988). Optimal block designs for comparing new treatments with a standard treatment. In Optimal Design and Analysis of Experiments (Y. Dodge. V.V. Fedorov and H.P. Wynn. Eds.) 15-27.North –Holland. Amsterdam. Majumdar. D. (1992). Optimal designs for comparing test treatments with a control utilizing prior information. The Annals of Statistics 20 216-237. Majumdar. D. and Notz, W. I. (1983). Optimal incomplete block designs for comparing test treatments with a control. The Annals of Statistics 11 258-266. Owen R.J. (1970). The optimum design of a two-factor experiment using prior information. The Annals of Mathematical Statistics 41 1971-1934. Stufken. J.(1991). Bayesian optimal experimental design for treatment-control comparisous in the presence of two-way heterogeneity. Journal of Statistical Planning and Inference 27 51-63. | zh_TW |