學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 連續性ARIMA轉移函數與季節性ARIMA轉移函數之運用及其整合
Application and Integration of Consecutive ARIMA Transfer and Seasonal ARIMA Trnasfer Function
作者 謝淑如
Hsieh, shu ju
貢獻者 周文賢
Chou, wen hsien
謝淑如
Hsieh, shu ju
關鍵詞 轉移函數
時間序列
連續性
季節性
整合
Transfer function
Time series
Consecutive
Seasonal
Integrate
日期 1993
上傳時間 29-四月-2016 16:44:05 (UTC+8)
摘要 為因應預測目的不同,有時需要各種預測水平{\\rm (forecast horizon)}
     ,例如,月預測可供進料、生產、補貨及倉儲之參考,年預測則可作為產
     能規畫、產品線規畫、投資決策等之準則。然而,預測結構卻會因水平的
     不同而彼此相異,以致產生諸多預測值的矛盾。有鑑於此,本研究主要以
     一簡單且具理論基礎的整合{\\rm intergration)} 過程,解決預測值互相
     矛盾的問題。由於年資料通常屬於連續性模式,月資料則多為季節性模式
     ,兩者透過的轉移函數形態截然不同,而且在解釋變數的選取上更是迥異
     ,因此,需要經由加權平均的整合,才能使月預測值的加總等於年預測值
     。至於權數的決定則以離散程度為準則,由於年資料為月資料的加總,兩
     者均值相差甚多,故以變異係數為測量離散情形的標準。本研究主要乃遵
     循{\\rm Box-Jenkins} 的模式建立法則,構建連續性轉移函數模式及季節
     性、轉移函數模式,並加以整合調整。在實證分析中以台灣啤酒銷售量為
     例說明預測流程,年銷量預測方面以國民所得為解釋變數; 月銷量預測方
     面則以氣溫為解釋變數,最後以加權平均將兩者整合調整。
參考文獻 (1). 魏庭、澤(1982), 數理統計學
     (2). 徐瑞玲(1988),『時間數列模型建立各種分析方法的比較與實證研
     究』,政治大學統計研究所
     (3). 顏月珠(1990), 商用統計學y 台北:三民。
     (4). 周文賢及游文清(1990), 計量經濟與時間序列分析/SASETS之運
     用, 台北, 教育部電算中心。
     (5). 陳儀庭(1992), 『進出口貿易預測系統之建立運用-以個案為例』,
     政治大學統計研究所
     
     
     (1 )Abrahan1,B. , `Seasonal time series and transfer fun ction modeling`, J o`l/,rnal
     of Business & Economic Statistics~3(1985) , No.4)56-361.
     (2)Abrahanl,B. and Box,G.E.P.,`Bayesian analysis of SOllle outlier problems
     in time series`,Biom,ertrika,66(1979),229-236.
     (3 )Akaike,H.` A llew look at statistical IDodel identification` ,LEEE Transactions
     on Automatic Contral,AC-19(1974 ))16-723.
     (4)Ansley,C.F.,`An algorithnl for the exact likelihood of a nlixed autoregressive
     lll oving a`verage process` ,Biometrika, 66(1979) ,59-65.
     (5)Ansley,C.F.and Newbold,P.,`On the bias in estinlates of forecast mean
     squared error`,Journal of American Statistz:cal Association, 76(1981),
     569-578.
     (6)Beguin,J .11. ,Gourieroux, C. and 110nfort,A., `Identification of a Inixed autoregressive
     moving average process:the corner method`,in O.D.Anderson
     (e.d. ), Journal of time series,Amsterdan1:N orth Holland, 1980.
     (7)Bell,vV.R.,`An introduction to forecasting with time series 1110dels`, Mathematics
     and Econom,ics,3(1984),241-255.
     (8)Bhansali,R.J.,`Autoregressive and \\iVindo"\\v Estimates of the Inverse Correlation
     Function`,B1:om.etrika, 67(1980),551-566.
     (9)Binder,D.A.and Dick,J.P.,`l1nplications of survey designs for estilnating
     seasonal ARl11A models`,ASA Proceeding of Survey Resea.rch Methods
     S ection,(1989) ,11-15 .
     (10)Bowerman,B.L.and Jobe).11.,`Using Box-Jenkins ARII\\1A Inodels to unify
     the teaching of applied forecasting methodologies` ,ASA Proceeding of
     Sta.tistical Ed`u.cation S ection,( 1987) ,131-134
     (11)Box,G.E.P. and Jenkins,G.I\\/I.,` Ti`me Series Analusis Forecasting and control`,
     San Francisco: Holden-Day (1976).
     (12)Box,G.E.P. and Tiao,G.C.,`Intervention analysis with applications to economic
     and environmental proble111`, J o `U.rnal of American Statistical
     79.
     (13)Box,G.E.P.and Pierce ,D.A., `Distribution of residual autocorrelation in
     autoregressive integrated moving average time series 1110dels` , Journal of
     Am.erican Statistical Association,65(1970))509-1526.
     (14)Burtschy,B.,`Variable seasonal transfer function`,ASA proceedings of Busi-,
     ness and Econom,ic st(J.tisi1:cs,6 (1985) ,614-618.
     (15 )Chatfield, C., `Inverse autocorrelations" J ouranl of Royal Statistical S oci-
     ety, Ser.A,142(1979),363-377.
     (16) Cleveland, vV.S., `The inverse autocorrelations of a tilne series and thier
     applications`, Technometrics,14( 1972) ,277-298.
     (17)Cleveland,\\~T.P.and Tiao G.C.,`110deling seasonal tilne series`, Economic
     Appliq1tee,32(1979),107-129.
     (18)Davies,N.and Petruccelli,J.D.`On the use of the general partial autocorrelation
     frnction for order determintion in AR11A(p,q) processes` , Journal
     American Sta.tistical Association, 79(1984),No.386,374-377.
     (19)Davies,N. ,Triggs, C.11.and N ewbold,P. ,`Significance levels of the Box-Pierce`
     potmanteau statistic in finite samples` ,Biometrika,64( 1977) ,517 -522.
     (20)Durbin,J.,` The Fitting of Tim.e Series Models` ,Rev.Int.Inst.Stat.28(1960),
     (21)Engle,Granger and Hallnlan,` 1/Ierging short- and long-Run forecasts an
     application of seasonal cointegration to nlonthly electricity sales forecasting`,
     Journal of Econom.etrics,40(1989), 45-62.
     (22 )Franke,J.,` A Levinson-Durbin recursion for autoregressive-moving average
     processes` ,Biometn:/;(J., 72( 1985) ,3,5 71-58l.
     (23)Godfrey,L. G.) `Testing the adequacy of a time series model` ,Bi07netrika,66
     7`)
      (24)Gray,H.L.)(elley,G.D.and 11Icintire,D.D.,`A new approach to AR11A 1110delling`,
     Commv,nications in Sta.tistics ,B7(1978),l-77.
     (25)Guerrero, V,lvl., `Optimal conditional ARIj\\/IA forecasts`, J ourna.l of Foreca.
     sting,8 (1989) ,215- 229.
     (26)Guerrero,V,,`ARI11A forecasts with restrictions derived frOl11 a structural
     change`,Internation Journa.l of Forecasting,7(1991), 339-347.
     (27)Hamil ton,D . C.and \\Vatts,D. G., `Interpreting patial autocorrelation func-
     Tion of seasonal time series models’,Biometrika,65(1978), 135-140.
     (28)Hannan,E.J.and Kavalieris,L.,’A method for autoregressive-moving average estimation’, Biometrika, 72(1984),2, 273-280.
     (29)Hannan,E.J. and Rissanen,J.’Recursive estimation of mixed autoregressive moving average order’, Biometrika, 69(1982),1,81-94.
     (30)Hillmer, S.C.and Tiao,G.C. Likelihood function of stationary multiple autoregressive moving average models’ , Journal of American Statistical 660
     (31)Hosking,J.R.M.,’Lagrange multiplier test of time series models’ , Journal of Royal Statistical Society B, 42(1980), 170-181.
     (32)Jenkins,G.M. and Alavi,A.S.,’Some aspects of modeling and ‘, Journal of Time Series Analysis, 2(1981), 1-47.
     (33)Kashyap,R.L.’Inconsistency od the AIC rule for estimating the order if autoregressibe models’ ,LEEE Transactions on Automatic Control ,AC-025,(1980), 996-998.
     (34)Klein,A.K.and Mélard, G.,’Fisher’s Information. Matrix for Seasonal Autoregressive Moving Average Models’, Journal of Time Series Analysis, 237.
     (35)Latour,A.and Roy,R., ‘ Some exact results on the sample autocovariances of a saeaonal ARIMA model’, The Canadian Journal of Statistics, 15(1987), 283-291.
     (36)Latour,A. and Roy,R.,’On the behavior of the sample autocovariances and autocorrelations of a seasonal ARIMA model’, Statistics & Probability Letters, 8(1989), 339-345.
     (37)Ledolter,J.and Box, G.E.P., ’Conditions for the optimality of exponential
     smoothing forecast procedures` ,Biometrika,25( 1 978),77-93.
     (38)Ledolter,J. `The effect of additive outliers on the forecasts from ARlTvIA
     models`,Internation Journal of Forecasting,5(1989),231-240.
     (39)Lin,\\iV.T.,`IVIodeling and forecasting hospital patient movements :univariate
     and lnultiple tilne serie approaches` ,Internation Journal of Forecasting,
     5(1989) ,195- 208.
     (40)Liu,L.M.,`Sales forecasting using multi-equation transfer function 1110dels`,
     6(1987),223-238.
     (41)Ljung,G.N.and Box,G.E.P.,`On a measure of lack of fit III tinle senes
     models` ,Biometrika,65 (1978),297-303.
     (42)Ljung,G.IVLand Box,G.E.P., (The likelihood function of stationary autoregressive
     nloving average 1110clels`,Biometrika,66 (1979),265-270.
     (43)Lusk,E.J. and Neves,J.S.: A Comparative ARIT\\1A of the 111 Series of
     the Makriakis Con1petition` 1 J ov.rnal of Forccast1:ng ,3 (1984) ,329-332.
     (44 )Makridakis,S. ,Andersen,A., Carbone,R. :Hibon,rv1. ,Filcles,R., Levlandowski,R.,
     ton)., Parzen,E.and Winkler,R. , , The accuracy of extrapolation(tilne
     series) mothods: results of a forecasting cOlnpetition`, J ov.rnal of Forecasting
     ,1(1982),111-153.
     (45 )Makridakis,S.ancl Hi bon,M.,` Accuracy of forecasting:an elnpirical investigation`,
     Journal of Royal Sta.stical Society A, 142(1979),97-145 .
     (46)MIckenzin,` A note on using the interated form of ARlI\\1A forecasts`, International
     Jov:rno.l of Forecasting,4(1988), 117-124.
     (47)Mcleod ,A.I.,` On the distribution and applications of resid ual autocorrelations
     in Box-J enkins 1110dels` , Journal of Roya.l Statistical Society B,40( 1978)302.
     (48)Ivliller,M.,Erden,J.V. and \\Vilus,R.,` An analysis of the accuracy of ARllvlA
     nlodels in forecasting unemployment insurance workloads`, ASA Statistical
     Association,( 1984) ,547-552.
     (49)Newbold,P.,`The equivalence of t,vo tests of tillle series nlodel adequacy
     `,Biometrika,67 (1980),463-465.
     (50)Neftce,S.N.`Specification of economic time series lllodeis using Akaike`s
     cri terion` , Journal American Sta.tistical Association, 77(1982),N 0.375,540.
     (51)Neter,J.,\\Vasserman,\\V. and Kutner)v.I.H.Applied liner statistical m.odels,華泰,台北,2nd,(1985).
     (52)Newbold,P.,`The exact likelihood function for a lllixed autoregressivenloving
     average process\\Biometrika.,61(1974),423-426.
     (53)Newbold,P.and Granger,C.W.J.,`Experience with forecasting univariate
     time series and the combination of forecasts` , Journal of Royal Statistical
     Society A,bf 137(1974),131-165.
     (54)Newbold,P.,`ARllVIA model building and the tinle senes analysis approach
     to forecasting ` ,Journal of foreca.sting, bf 2( 1983) )3-35.
     (55)Nicholls,D.F. and Hall,A.D.,`The exact likelihood funtion of 111ultivariate
     autoregressive-lVlmving average models`, Biometrika,66(1979),259-264.
     (56)Pena,D., `The autocorrelation function of seasonal Afu\\IIA 1110dels`, 5 (1984),272.
     (57)Phanl,D. T.,` Estilnation of autoregrcssiye paranleter and order selection
     for ARlVIA models `,Jo7J.rnal of Time Series Analysis,bf 9(1988) ,3,265-279
     (58)Poskitt,D.S.Clnd Tremayne,A.R., :Testing the specification of a fitted ARNIA
     model` ,Biometrika,6 7(1980) ,359-363.
     (59)Poskitt,D.S.and Tremayne,A.R.,`An approach to testing linear time series
     models`,Annals of Statistics,9(1981),976-986.
     (60)Poskitt,D.S.and Tremayna,A.R.,`Diagnostic tests for multiple time series
     lnodels`,Annals of Statistics ,10(1982), 114-120.
     (61 )Parzen,E.,` ARARlv1A lnodels for time series analysis and forecasting`,
     lournal of Forecasting, 1(1982),67-82.
     (62)Pukkila,T. ,Koreisha,A. and Kallinen,A.,`The identification of AR}/IA
     models`,Biom,etrika, 77( 1990) :3,537-548.
     (63)SAS/ETS User)s Gv,ide,Cary:SAS Institute Inc.,(1988).
     (64)SAS/IML User-`s Gl1,ide,Cary:SAS Institute Inc.,(1988).
     (65 )Schwarz, G.` Estimatinf the dimension of a n10del" ,Annals of Statistics
     ,6( 1978),461-464.
     (66)Tasy:R.S.and Tiao,G.C.`Consistent estimates of autoregressive pal`ametel`S
     and extended sample autocorrelation functions for stationary and
     nonstationary ARj\\lIA models`, lo`U:rn.o.l A merican Statistical Association,
     79 (1984 ),84-96.
     (67)Tasy,R.S .and Tiao,G.C.`Use of cononical analusis in time series model
     identification` ,Biom,etr-ika, 72(1985 ),2,299-315.
     (68)Thompson,P.A.and Ivliller:R.B.,`Sampling the future:A Bayesian approacb
     to forecasting fron1 univariate time series`, lourno,l of Bv,siness and Econom,
     ic Statistics,bf 4(1986),427-436.
     (69)Tiao,G.C. and Box,G.E.P.,`IVlocleling multiple tilne series \\vith applications`,
     lour-nal of Amer-ican Statistical, 7 6(1981), 802-816.
     (70)Vandaele,\\V.,Applied Tim,e Ser-ies o,nd Box-Jenkins Models,雙葉,台北
     ,(1983).
     (71)Yajima,Y.,’Asymptotic properties of the sample autocorrelations and partial autocorrelation of a multiplicative ARIMA process’, 6(1985),No.3, 187-201.
描述 碩士
國立政治大學
統計學系
G80354015
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002004199
資料類型 thesis
dc.contributor.advisor 周文賢zh_TW
dc.contributor.advisor Chou, wen hsienen_US
dc.contributor.author (作者) 謝淑如zh_TW
dc.contributor.author (作者) Hsieh, shu juen_US
dc.creator (作者) 謝淑如zh_TW
dc.creator (作者) Hsieh, shu juen_US
dc.date (日期) 1993en_US
dc.date.accessioned 29-四月-2016 16:44:05 (UTC+8)-
dc.date.available 29-四月-2016 16:44:05 (UTC+8)-
dc.date.issued (上傳時間) 29-四月-2016 16:44:05 (UTC+8)-
dc.identifier (其他 識別碼) B2002004199en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/89024-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) G80354015zh_TW
dc.description.abstract (摘要) 為因應預測目的不同,有時需要各種預測水平{\\rm (forecast horizon)}
     ,例如,月預測可供進料、生產、補貨及倉儲之參考,年預測則可作為產
     能規畫、產品線規畫、投資決策等之準則。然而,預測結構卻會因水平的
     不同而彼此相異,以致產生諸多預測值的矛盾。有鑑於此,本研究主要以
     一簡單且具理論基礎的整合{\\rm intergration)} 過程,解決預測值互相
     矛盾的問題。由於年資料通常屬於連續性模式,月資料則多為季節性模式
     ,兩者透過的轉移函數形態截然不同,而且在解釋變數的選取上更是迥異
     ,因此,需要經由加權平均的整合,才能使月預測值的加總等於年預測值
     。至於權數的決定則以離散程度為準則,由於年資料為月資料的加總,兩
     者均值相差甚多,故以變異係數為測量離散情形的標準。本研究主要乃遵
     循{\\rm Box-Jenkins} 的模式建立法則,構建連續性轉移函數模式及季節
     性、轉移函數模式,並加以整合調整。在實證分析中以台灣啤酒銷售量為
     例說明預測流程,年銷量預測方面以國民所得為解釋變數; 月銷量預測方
     面則以氣溫為解釋變數,最後以加權平均將兩者整合調整。
zh_TW
dc.description.tableofcontents 第一章 緒論
      1.1 研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
      1.2 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1
      1.3 研究方法摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 2
      1.4 章節架構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 2
     
     第二章 相關文獻探討
      2.1 相關文獻方法回顧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 3
      2.2 模式辨認‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 6
      2.3 參數估計與診斷檢定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 10
      2.4 模式預測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 11
     
     第三章 理論架構
      3.1 預測架構建立‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 13
      3.2 ARIMA模式建立‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 13
      3.3 ARIMA轉移函數模式建立‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 31
      3.4 季節性ARIMA模式建立‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 38
      3.5 季節性ARIMA轉移函數模式建立‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 44
      3.6 預測整合‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 45
     
     第四章 實證分析
      4.1 預測架構及流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 52
      4.2 國民所得預測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 53
      4.3 啤酒年銷售量預測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 58
      4.4 月均溫預測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 63
      4.5 啤酒月銷售量預測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 69
      4.6 預測整合‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 76
     
     第五章 結論
      5.1 研究發現‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 79
      5.2 應用方向‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 79
      5.3 研究限制及後續方向‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 80
     
     參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 81
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002004199en_US
dc.subject (關鍵詞) 轉移函數zh_TW
dc.subject (關鍵詞) 時間序列zh_TW
dc.subject (關鍵詞) 連續性zh_TW
dc.subject (關鍵詞) 季節性zh_TW
dc.subject (關鍵詞) 整合zh_TW
dc.subject (關鍵詞) Transfer functionen_US
dc.subject (關鍵詞) Time seriesen_US
dc.subject (關鍵詞) Consecutiveen_US
dc.subject (關鍵詞) Seasonalen_US
dc.subject (關鍵詞) Integrateen_US
dc.title (題名) 連續性ARIMA轉移函數與季節性ARIMA轉移函數之運用及其整合zh_TW
dc.title (題名) Application and Integration of Consecutive ARIMA Transfer and Seasonal ARIMA Trnasfer Functionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) (1). 魏庭、澤(1982), 數理統計學
     (2). 徐瑞玲(1988),『時間數列模型建立各種分析方法的比較與實證研
     究』,政治大學統計研究所
     (3). 顏月珠(1990), 商用統計學y 台北:三民。
     (4). 周文賢及游文清(1990), 計量經濟與時間序列分析/SASETS之運
     用, 台北, 教育部電算中心。
     (5). 陳儀庭(1992), 『進出口貿易預測系統之建立運用-以個案為例』,
     政治大學統計研究所
     
     
     (1 )Abrahan1,B. , `Seasonal time series and transfer fun ction modeling`, J o`l/,rnal
     of Business & Economic Statistics~3(1985) , No.4)56-361.
     (2)Abrahanl,B. and Box,G.E.P.,`Bayesian analysis of SOllle outlier problems
     in time series`,Biom,ertrika,66(1979),229-236.
     (3 )Akaike,H.` A llew look at statistical IDodel identification` ,LEEE Transactions
     on Automatic Contral,AC-19(1974 ))16-723.
     (4)Ansley,C.F.,`An algorithnl for the exact likelihood of a nlixed autoregressive
     lll oving a`verage process` ,Biometrika, 66(1979) ,59-65.
     (5)Ansley,C.F.and Newbold,P.,`On the bias in estinlates of forecast mean
     squared error`,Journal of American Statistz:cal Association, 76(1981),
     569-578.
     (6)Beguin,J .11. ,Gourieroux, C. and 110nfort,A., `Identification of a Inixed autoregressive
     moving average process:the corner method`,in O.D.Anderson
     (e.d. ), Journal of time series,Amsterdan1:N orth Holland, 1980.
     (7)Bell,vV.R.,`An introduction to forecasting with time series 1110dels`, Mathematics
     and Econom,ics,3(1984),241-255.
     (8)Bhansali,R.J.,`Autoregressive and \\iVindo"\\v Estimates of the Inverse Correlation
     Function`,B1:om.etrika, 67(1980),551-566.
     (9)Binder,D.A.and Dick,J.P.,`l1nplications of survey designs for estilnating
     seasonal ARl11A models`,ASA Proceeding of Survey Resea.rch Methods
     S ection,(1989) ,11-15 .
     (10)Bowerman,B.L.and Jobe).11.,`Using Box-Jenkins ARII\\1A Inodels to unify
     the teaching of applied forecasting methodologies` ,ASA Proceeding of
     Sta.tistical Ed`u.cation S ection,( 1987) ,131-134
     (11)Box,G.E.P. and Jenkins,G.I\\/I.,` Ti`me Series Analusis Forecasting and control`,
     San Francisco: Holden-Day (1976).
     (12)Box,G.E.P. and Tiao,G.C.,`Intervention analysis with applications to economic
     and environmental proble111`, J o `U.rnal of American Statistical
     79.
     (13)Box,G.E.P.and Pierce ,D.A., `Distribution of residual autocorrelation in
     autoregressive integrated moving average time series 1110dels` , Journal of
     Am.erican Statistical Association,65(1970))509-1526.
     (14)Burtschy,B.,`Variable seasonal transfer function`,ASA proceedings of Busi-,
     ness and Econom,ic st(J.tisi1:cs,6 (1985) ,614-618.
     (15 )Chatfield, C., `Inverse autocorrelations" J ouranl of Royal Statistical S oci-
     ety, Ser.A,142(1979),363-377.
     (16) Cleveland, vV.S., `The inverse autocorrelations of a tilne series and thier
     applications`, Technometrics,14( 1972) ,277-298.
     (17)Cleveland,\\~T.P.and Tiao G.C.,`110deling seasonal tilne series`, Economic
     Appliq1tee,32(1979),107-129.
     (18)Davies,N.and Petruccelli,J.D.`On the use of the general partial autocorrelation
     frnction for order determintion in AR11A(p,q) processes` , Journal
     American Sta.tistical Association, 79(1984),No.386,374-377.
     (19)Davies,N. ,Triggs, C.11.and N ewbold,P. ,`Significance levels of the Box-Pierce`
     potmanteau statistic in finite samples` ,Biometrika,64( 1977) ,517 -522.
     (20)Durbin,J.,` The Fitting of Tim.e Series Models` ,Rev.Int.Inst.Stat.28(1960),
     (21)Engle,Granger and Hallnlan,` 1/Ierging short- and long-Run forecasts an
     application of seasonal cointegration to nlonthly electricity sales forecasting`,
     Journal of Econom.etrics,40(1989), 45-62.
     (22 )Franke,J.,` A Levinson-Durbin recursion for autoregressive-moving average
     processes` ,Biometn:/;(J., 72( 1985) ,3,5 71-58l.
     (23)Godfrey,L. G.) `Testing the adequacy of a time series model` ,Bi07netrika,66
     7`)
      (24)Gray,H.L.)(elley,G.D.and 11Icintire,D.D.,`A new approach to AR11A 1110delling`,
     Commv,nications in Sta.tistics ,B7(1978),l-77.
     (25)Guerrero, V,lvl., `Optimal conditional ARIj\\/IA forecasts`, J ourna.l of Foreca.
     sting,8 (1989) ,215- 229.
     (26)Guerrero,V,,`ARI11A forecasts with restrictions derived frOl11 a structural
     change`,Internation Journa.l of Forecasting,7(1991), 339-347.
     (27)Hamil ton,D . C.and \\Vatts,D. G., `Interpreting patial autocorrelation func-
     Tion of seasonal time series models’,Biometrika,65(1978), 135-140.
     (28)Hannan,E.J.and Kavalieris,L.,’A method for autoregressive-moving average estimation’, Biometrika, 72(1984),2, 273-280.
     (29)Hannan,E.J. and Rissanen,J.’Recursive estimation of mixed autoregressive moving average order’, Biometrika, 69(1982),1,81-94.
     (30)Hillmer, S.C.and Tiao,G.C. Likelihood function of stationary multiple autoregressive moving average models’ , Journal of American Statistical 660
     (31)Hosking,J.R.M.,’Lagrange multiplier test of time series models’ , Journal of Royal Statistical Society B, 42(1980), 170-181.
     (32)Jenkins,G.M. and Alavi,A.S.,’Some aspects of modeling and ‘, Journal of Time Series Analysis, 2(1981), 1-47.
     (33)Kashyap,R.L.’Inconsistency od the AIC rule for estimating the order if autoregressibe models’ ,LEEE Transactions on Automatic Control ,AC-025,(1980), 996-998.
     (34)Klein,A.K.and Mélard, G.,’Fisher’s Information. Matrix for Seasonal Autoregressive Moving Average Models’, Journal of Time Series Analysis, 237.
     (35)Latour,A.and Roy,R., ‘ Some exact results on the sample autocovariances of a saeaonal ARIMA model’, The Canadian Journal of Statistics, 15(1987), 283-291.
     (36)Latour,A. and Roy,R.,’On the behavior of the sample autocovariances and autocorrelations of a seasonal ARIMA model’, Statistics & Probability Letters, 8(1989), 339-345.
     (37)Ledolter,J.and Box, G.E.P., ’Conditions for the optimality of exponential
     smoothing forecast procedures` ,Biometrika,25( 1 978),77-93.
     (38)Ledolter,J. `The effect of additive outliers on the forecasts from ARlTvIA
     models`,Internation Journal of Forecasting,5(1989),231-240.
     (39)Lin,\\iV.T.,`IVIodeling and forecasting hospital patient movements :univariate
     and lnultiple tilne serie approaches` ,Internation Journal of Forecasting,
     5(1989) ,195- 208.
     (40)Liu,L.M.,`Sales forecasting using multi-equation transfer function 1110dels`,
     6(1987),223-238.
     (41)Ljung,G.N.and Box,G.E.P.,`On a measure of lack of fit III tinle senes
     models` ,Biometrika,65 (1978),297-303.
     (42)Ljung,G.IVLand Box,G.E.P., (The likelihood function of stationary autoregressive
     nloving average 1110clels`,Biometrika,66 (1979),265-270.
     (43)Lusk,E.J. and Neves,J.S.: A Comparative ARIT\\1A of the 111 Series of
     the Makriakis Con1petition` 1 J ov.rnal of Forccast1:ng ,3 (1984) ,329-332.
     (44 )Makridakis,S. ,Andersen,A., Carbone,R. :Hibon,rv1. ,Filcles,R., Levlandowski,R.,
     ton)., Parzen,E.and Winkler,R. , , The accuracy of extrapolation(tilne
     series) mothods: results of a forecasting cOlnpetition`, J ov.rnal of Forecasting
     ,1(1982),111-153.
     (45 )Makridakis,S.ancl Hi bon,M.,` Accuracy of forecasting:an elnpirical investigation`,
     Journal of Royal Sta.stical Society A, 142(1979),97-145 .
     (46)MIckenzin,` A note on using the interated form of ARlI\\1A forecasts`, International
     Jov:rno.l of Forecasting,4(1988), 117-124.
     (47)Mcleod ,A.I.,` On the distribution and applications of resid ual autocorrelations
     in Box-J enkins 1110dels` , Journal of Roya.l Statistical Society B,40( 1978)302.
     (48)Ivliller,M.,Erden,J.V. and \\Vilus,R.,` An analysis of the accuracy of ARllvlA
     nlodels in forecasting unemployment insurance workloads`, ASA Statistical
     Association,( 1984) ,547-552.
     (49)Newbold,P.,`The equivalence of t,vo tests of tillle series nlodel adequacy
     `,Biometrika,67 (1980),463-465.
     (50)Neftce,S.N.`Specification of economic time series lllodeis using Akaike`s
     cri terion` , Journal American Sta.tistical Association, 77(1982),N 0.375,540.
     (51)Neter,J.,\\Vasserman,\\V. and Kutner)v.I.H.Applied liner statistical m.odels,華泰,台北,2nd,(1985).
     (52)Newbold,P.,`The exact likelihood function for a lllixed autoregressivenloving
     average process\\Biometrika.,61(1974),423-426.
     (53)Newbold,P.and Granger,C.W.J.,`Experience with forecasting univariate
     time series and the combination of forecasts` , Journal of Royal Statistical
     Society A,bf 137(1974),131-165.
     (54)Newbold,P.,`ARllVIA model building and the tinle senes analysis approach
     to forecasting ` ,Journal of foreca.sting, bf 2( 1983) )3-35.
     (55)Nicholls,D.F. and Hall,A.D.,`The exact likelihood funtion of 111ultivariate
     autoregressive-lVlmving average models`, Biometrika,66(1979),259-264.
     (56)Pena,D., `The autocorrelation function of seasonal Afu\\IIA 1110dels`, 5 (1984),272.
     (57)Phanl,D. T.,` Estilnation of autoregrcssiye paranleter and order selection
     for ARlVIA models `,Jo7J.rnal of Time Series Analysis,bf 9(1988) ,3,265-279
     (58)Poskitt,D.S.Clnd Tremayne,A.R., :Testing the specification of a fitted ARNIA
     model` ,Biometrika,6 7(1980) ,359-363.
     (59)Poskitt,D.S.and Tremayne,A.R.,`An approach to testing linear time series
     models`,Annals of Statistics,9(1981),976-986.
     (60)Poskitt,D.S.and Tremayna,A.R.,`Diagnostic tests for multiple time series
     lnodels`,Annals of Statistics ,10(1982), 114-120.
     (61 )Parzen,E.,` ARARlv1A lnodels for time series analysis and forecasting`,
     lournal of Forecasting, 1(1982),67-82.
     (62)Pukkila,T. ,Koreisha,A. and Kallinen,A.,`The identification of AR}/IA
     models`,Biom,etrika, 77( 1990) :3,537-548.
     (63)SAS/ETS User)s Gv,ide,Cary:SAS Institute Inc.,(1988).
     (64)SAS/IML User-`s Gl1,ide,Cary:SAS Institute Inc.,(1988).
     (65 )Schwarz, G.` Estimatinf the dimension of a n10del" ,Annals of Statistics
     ,6( 1978),461-464.
     (66)Tasy:R.S.and Tiao,G.C.`Consistent estimates of autoregressive pal`ametel`S
     and extended sample autocorrelation functions for stationary and
     nonstationary ARj\\lIA models`, lo`U:rn.o.l A merican Statistical Association,
     79 (1984 ),84-96.
     (67)Tasy,R.S .and Tiao,G.C.`Use of cononical analusis in time series model
     identification` ,Biom,etr-ika, 72(1985 ),2,299-315.
     (68)Thompson,P.A.and Ivliller:R.B.,`Sampling the future:A Bayesian approacb
     to forecasting fron1 univariate time series`, lourno,l of Bv,siness and Econom,
     ic Statistics,bf 4(1986),427-436.
     (69)Tiao,G.C. and Box,G.E.P.,`IVlocleling multiple tilne series \\vith applications`,
     lour-nal of Amer-ican Statistical, 7 6(1981), 802-816.
     (70)Vandaele,\\V.,Applied Tim,e Ser-ies o,nd Box-Jenkins Models,雙葉,台北
     ,(1983).
     (71)Yajima,Y.,’Asymptotic properties of the sample autocorrelations and partial autocorrelation of a multiplicative ARIMA process’, 6(1985),No.3, 187-201.
zh_TW