學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 論混合常態分配之估計
作者 李瑞蘭
貢獻者 李隆安
李瑞蘭
日期 1991
1990
上傳時間 2-五月-2016 17:02:53 (UTC+8)
摘要 混合模式(mixture m。del) 參數的估計問題,研究迄今已近一世紀,自Pearson (1894) 提出動差法來估計兩個混合常態模式的參數,往後有許多學者繼續這個範疇的研究,且提出他們不同的估計法。而近半世紀以來,混合常態分配被廣泛應用在許多學科的進一步研究分析上,因此,它的參數估計的意義就更顯重要。
     我們欲估計兩個混合常態分配的參數,但原參數空間有識別性的問題,估計參數時會產生Chiang 等人所提的不好的現象,經過適當轉換後的新參數空間,則無識別性的問題。本文第一章簡單地介紹吾師李隆安博士所提的四個空間轉換函數和轉換後所對應的新參數空間。在第二章中,先簡單地介紹一些估計兩個混合常態參數的方法,然後再介紹現今最常用來估計兩個混合常態參數的方法- MLE ,其中包括估計MLE 的EM 演算法、牛頓法和最佳化循序演算法,並將Burnham (1988) 提出求解有限混合分配的最大概似估計值的縮減公式,應用在EM 演算法上,可知道五維參數EM 反覆求解法即三維參數EM 反覆求解法,可以縮減計算問題的大小。同時也介紹拋磚引玉法,其為一精深再抽樣的方法,它有系統的改進原始估計值及估計改進後估計式的變異數。在第三章中,對摸擬所需之資料組、反覆求解的式子和數值問題的解決方法做介紹。第四章中,針對EM法配合求解MLE 的縮減公式和最佳化循序演算法估計所得之兩個混合常態分配參數估計值做分析,並做原參數空間和新參數空間上EM 法收斂快慢的比較;此外並將應用拋磚引玉法,取一些特殊形式的統計量來估計參數的結果做記錄。 第五章,為結論與進一步研究。
參考文獻 Beran,R. (1977), Minimum Hellinger Distance Estimates for Parametric Modles.The Annals of Statistics,5 ,445-463
     Brenton R. Clarke (1989,Feb), An unbiased minimum distance estimator of the proportion parameter in a mixture of two normal distribution. Statistics & Probability Letters. Vol 7, No 4,275-281
     Bryant,J.L. and Paulson,A.S. (1983), Estimating of Mixing Proportions via Distance between Characteristic Functions.Communications in Statistics,A12,1009-1029
     Burnham,K.P.(1988), A Comment on Maximum Likelihood Estimation for Finite Mixture of Distributions.Biom,J. Vol 30, No 3,379-384
     Cassie,R.M. (1954), Some Uses of Probability Paper in the Analysis of Size Frequency Distributions. Austral,J. of Marine and Freshwater Res,5,513-22
     Chiang,C.L. (1951),On the Design of Mass Medical Surveys. Human Biol. 23,242-271
     Choi,K. and Bulgren,W.G. (1968), An Estimation Procedure for Mixtures of Distributions.Journal of the Royal Statistical Society,Ser.B, 30,444-460.
     Cohen,A.C. (1967), Estimation in Mixtures of two Normal Distribution.Technometrics,9,l5-28
     Day, N. E. (1969), Estimating the Components of a Mixture Normal Distributions.Biometrika,56,463-474
     Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Sere B 39, 1-38
     D.M. Titterington; A.F.M. Smith; U.E. Markov, Statistical Analysis of Finite Mixture Distributions 1985 Wiley NY:UK 243P
     Everitt, B.S. and Hand, D.J. (1981), Finite Mixture Distributions. Chapman and Hall
     Everitt, B.S. (1984), Maximum Likekihood Estimation of the Parameters in a Mixture of Two Univariate Normal Distributions: A Comparison of Different Algorithms.The Statistican,33,205-215
     Fabir. , Rossi, (1983), Decompsition of Mixture Via a Generalized E-M Method.Metron,133-146
     Fisher, R.A. (1922), On the Mathematical Foundations of Theoretical Statistics.reprinted in contributions to Mathematical Statistics (by R.A.Fisher)(1950), J. Wiley & Sons, New York
     Fowlkes, E.B. (1979), Some Methods for Studying the Mixture of Two Normal(Lgnormal) Distributions. Journal of the American StatisticalAssociation, 74,561-575
     Harding, J.P. (1949), The Use of Probability Paper for the Graphical Analysis of Polymodal Frequency Distributions. J. of the Marine Biol. Ass. of the UK, 28, 141-53
     Hathaway, R.J. (1985), A Constrained Formulation of Maximum Likelihood Estimation for Normal Mixture Distributions. The Annals of Statistics,vol 13, No 2,795-800
     Hathaway, R.J. (1986,a), A Constrained EM Algorithm for Univariate Normal Mixtures. Journal of Statistical Computation and Simulation, 23,211-230
     Hathaway, R.J. (1986,b), Another Interpretation of the EM Algorithm for Mixture Distributions. Statistics & Probability Letters,4,53-56
     James C. Fu (1989), Method of Kim-Zam : An Algorithm for Computing the Maximum Likelihood Estimator. Statistics & Probability Letters,8,289-296
     James C. FU, Lung-An Li (1989), Method of Pao-Zhuan-Yin-Yu: A method of Stochastic Point Estimate.
     Kiefer, N.M. (1978), Comment Journal of the American Statistical Associations,December,P 744
     Kiefer, N.M. (1978), Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model. Econometrica 46, 427-434
     Kumar,K.D., Nicklin,E.H.,and Paulson,A.S. (1979), Comment on `Estimating Mixtures of Normal Distributions and switching Distributions` by Quandt and Ramsey. Journal of the American Statistical Association, 74,52-55
     Liang,W. (1989), Strong Consistency of Constrained Maximum Likelihood Estimator of Finite Normal Mixture. Bulletin of Institute of Mathematics Academia Sinica, Vol 17, No 4,299-304
     Louis,T.A. (1982), Finding the Observed Information Matrix When Using the EM Algorithm. Journal of the Royal Statistical Society, Ser.B 44,226-233
     Macdonald,P.D.M. (1971), Comment on `An Estimation Procedure for Mixture of Distributions` by Choi and Bulgren. Journal of the Royal Statistical Society, Ser.B,33, 326-329
     Pearson,K. (1894), Contribution to the Mathematical Theory of Evolution.Philosophical Transactions of the Royal Society of London,Ser.A, 71-110
     Quandt,R.E. and Ramsey,J.B. (1978), Estimating Mixtures of Normal Distributions and Switching Regressions. Journal of the American Statics tical Association 73, 730-738
     Robertson,C.A. and Fryer,J.G. (1972), A Comparison of Some Methods for Estimating Mixed Normal Distributions. Biometrika,59,639-648
     Tan,W.Y. and Chang,W.C. (1972), Some Comparisons of Method of Moments and the Method of Maximum Likelihood in Estimating Parameters of a Mixture of Two Normal densities. J.Amer Statist Assoc. 67,702-708
     Woodward,W.A., Parr,W.C., Schucany, W.R., and Lindsey,H (1984), A Comparison of Minimum Distance and Maximum Likelihood Estimation of a Mixture Proportion.
     Wu,C.F.J. (1983), On the Convergence Properities of the EM Algorithm. The Annals of Stastistics,Vol 11, No 1, 95-103
     李友錚(1985),利用最小Hellinger距離估計混合模式的參數,清大工業工程碩士論文
     劉培熙(1987),最小距離估計法應用於離散機率分配混合模式之研究,清大工業工程所碩士論文
     黃瓊玉(1990),論混合常態之可識別性,政大統計所碩士論文
描述 碩士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005031
資料類型 thesis
dc.contributor.advisor 李隆安zh_TW
dc.contributor.author (作者) 李瑞蘭zh_TW
dc.creator (作者) 李瑞蘭zh_TW
dc.date (日期) 1991en_US
dc.date (日期) 1990en_US
dc.date.accessioned 2-五月-2016 17:02:53 (UTC+8)-
dc.date.available 2-五月-2016 17:02:53 (UTC+8)-
dc.date.issued (上傳時間) 2-五月-2016 17:02:53 (UTC+8)-
dc.identifier (其他 識別碼) B2002005031en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/89644-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.abstract (摘要) 混合模式(mixture m。del) 參數的估計問題,研究迄今已近一世紀,自Pearson (1894) 提出動差法來估計兩個混合常態模式的參數,往後有許多學者繼續這個範疇的研究,且提出他們不同的估計法。而近半世紀以來,混合常態分配被廣泛應用在許多學科的進一步研究分析上,因此,它的參數估計的意義就更顯重要。
     我們欲估計兩個混合常態分配的參數,但原參數空間有識別性的問題,估計參數時會產生Chiang 等人所提的不好的現象,經過適當轉換後的新參數空間,則無識別性的問題。本文第一章簡單地介紹吾師李隆安博士所提的四個空間轉換函數和轉換後所對應的新參數空間。在第二章中,先簡單地介紹一些估計兩個混合常態參數的方法,然後再介紹現今最常用來估計兩個混合常態參數的方法- MLE ,其中包括估計MLE 的EM 演算法、牛頓法和最佳化循序演算法,並將Burnham (1988) 提出求解有限混合分配的最大概似估計值的縮減公式,應用在EM 演算法上,可知道五維參數EM 反覆求解法即三維參數EM 反覆求解法,可以縮減計算問題的大小。同時也介紹拋磚引玉法,其為一精深再抽樣的方法,它有系統的改進原始估計值及估計改進後估計式的變異數。在第三章中,對摸擬所需之資料組、反覆求解的式子和數值問題的解決方法做介紹。第四章中,針對EM法配合求解MLE 的縮減公式和最佳化循序演算法估計所得之兩個混合常態分配參數估計值做分析,並做原參數空間和新參數空間上EM 法收斂快慢的比較;此外並將應用拋磚引玉法,取一些特殊形式的統計量來估計參數的結果做記錄。 第五章,為結論與進一步研究。
zh_TW
dc.description.tableofcontents 摘要....................1
     第一章 緒論....................2
     1-1 混合常態的可識別性....................2
     1-2 空間轉換函數....................3
     第二章 混合常態分配的參數估計....................22
     2-1 動差法、圖形估計法、動差母函數法、最小距離估計法....................22
     2-2 最大概似法....................24
     2-2-1 MLE 的一致性....................26
     2-2-2 MLE 求解的縮減公式....................26
     2-3 牛頓法....................27
     2-4 EM 演算法.................... 28
     2-5 最佳化循序演算法....................31
     2-6 目前所提出之方法已有的比較結果....................33
     2-7 拋磚引玉法....................34
     第三章 模擬程序....................37
     3-1 原始資料的產生....................37
     3-2 EM 演算法....................42
     3-3 最佳化循序演算法....................43
     3-4 拋磚引玉法....................44
     3-5 解決數值之問題....................44
     第四章 模擬結果分析
     4-1 EM演算法....................47
     4-2 最佳化循序演算法....................47
     4-3 拋磚引玉法....................53
     第五章 結論與進一步研究....................55
     5-1 結論....................55
     5-2 進一步研究....................55
     參考文獻....................57
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005031en_US
dc.title (題名) 論混合常態分配之估計zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Beran,R. (1977), Minimum Hellinger Distance Estimates for Parametric Modles.The Annals of Statistics,5 ,445-463
     Brenton R. Clarke (1989,Feb), An unbiased minimum distance estimator of the proportion parameter in a mixture of two normal distribution. Statistics & Probability Letters. Vol 7, No 4,275-281
     Bryant,J.L. and Paulson,A.S. (1983), Estimating of Mixing Proportions via Distance between Characteristic Functions.Communications in Statistics,A12,1009-1029
     Burnham,K.P.(1988), A Comment on Maximum Likelihood Estimation for Finite Mixture of Distributions.Biom,J. Vol 30, No 3,379-384
     Cassie,R.M. (1954), Some Uses of Probability Paper in the Analysis of Size Frequency Distributions. Austral,J. of Marine and Freshwater Res,5,513-22
     Chiang,C.L. (1951),On the Design of Mass Medical Surveys. Human Biol. 23,242-271
     Choi,K. and Bulgren,W.G. (1968), An Estimation Procedure for Mixtures of Distributions.Journal of the Royal Statistical Society,Ser.B, 30,444-460.
     Cohen,A.C. (1967), Estimation in Mixtures of two Normal Distribution.Technometrics,9,l5-28
     Day, N. E. (1969), Estimating the Components of a Mixture Normal Distributions.Biometrika,56,463-474
     Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Sere B 39, 1-38
     D.M. Titterington; A.F.M. Smith; U.E. Markov, Statistical Analysis of Finite Mixture Distributions 1985 Wiley NY:UK 243P
     Everitt, B.S. and Hand, D.J. (1981), Finite Mixture Distributions. Chapman and Hall
     Everitt, B.S. (1984), Maximum Likekihood Estimation of the Parameters in a Mixture of Two Univariate Normal Distributions: A Comparison of Different Algorithms.The Statistican,33,205-215
     Fabir. , Rossi, (1983), Decompsition of Mixture Via a Generalized E-M Method.Metron,133-146
     Fisher, R.A. (1922), On the Mathematical Foundations of Theoretical Statistics.reprinted in contributions to Mathematical Statistics (by R.A.Fisher)(1950), J. Wiley & Sons, New York
     Fowlkes, E.B. (1979), Some Methods for Studying the Mixture of Two Normal(Lgnormal) Distributions. Journal of the American StatisticalAssociation, 74,561-575
     Harding, J.P. (1949), The Use of Probability Paper for the Graphical Analysis of Polymodal Frequency Distributions. J. of the Marine Biol. Ass. of the UK, 28, 141-53
     Hathaway, R.J. (1985), A Constrained Formulation of Maximum Likelihood Estimation for Normal Mixture Distributions. The Annals of Statistics,vol 13, No 2,795-800
     Hathaway, R.J. (1986,a), A Constrained EM Algorithm for Univariate Normal Mixtures. Journal of Statistical Computation and Simulation, 23,211-230
     Hathaway, R.J. (1986,b), Another Interpretation of the EM Algorithm for Mixture Distributions. Statistics & Probability Letters,4,53-56
     James C. Fu (1989), Method of Kim-Zam : An Algorithm for Computing the Maximum Likelihood Estimator. Statistics & Probability Letters,8,289-296
     James C. FU, Lung-An Li (1989), Method of Pao-Zhuan-Yin-Yu: A method of Stochastic Point Estimate.
     Kiefer, N.M. (1978), Comment Journal of the American Statistical Associations,December,P 744
     Kiefer, N.M. (1978), Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model. Econometrica 46, 427-434
     Kumar,K.D., Nicklin,E.H.,and Paulson,A.S. (1979), Comment on `Estimating Mixtures of Normal Distributions and switching Distributions` by Quandt and Ramsey. Journal of the American Statistical Association, 74,52-55
     Liang,W. (1989), Strong Consistency of Constrained Maximum Likelihood Estimator of Finite Normal Mixture. Bulletin of Institute of Mathematics Academia Sinica, Vol 17, No 4,299-304
     Louis,T.A. (1982), Finding the Observed Information Matrix When Using the EM Algorithm. Journal of the Royal Statistical Society, Ser.B 44,226-233
     Macdonald,P.D.M. (1971), Comment on `An Estimation Procedure for Mixture of Distributions` by Choi and Bulgren. Journal of the Royal Statistical Society, Ser.B,33, 326-329
     Pearson,K. (1894), Contribution to the Mathematical Theory of Evolution.Philosophical Transactions of the Royal Society of London,Ser.A, 71-110
     Quandt,R.E. and Ramsey,J.B. (1978), Estimating Mixtures of Normal Distributions and Switching Regressions. Journal of the American Statics tical Association 73, 730-738
     Robertson,C.A. and Fryer,J.G. (1972), A Comparison of Some Methods for Estimating Mixed Normal Distributions. Biometrika,59,639-648
     Tan,W.Y. and Chang,W.C. (1972), Some Comparisons of Method of Moments and the Method of Maximum Likelihood in Estimating Parameters of a Mixture of Two Normal densities. J.Amer Statist Assoc. 67,702-708
     Woodward,W.A., Parr,W.C., Schucany, W.R., and Lindsey,H (1984), A Comparison of Minimum Distance and Maximum Likelihood Estimation of a Mixture Proportion.
     Wu,C.F.J. (1983), On the Convergence Properities of the EM Algorithm. The Annals of Stastistics,Vol 11, No 1, 95-103
     李友錚(1985),利用最小Hellinger距離估計混合模式的參數,清大工業工程碩士論文
     劉培熙(1987),最小距離估計法應用於離散機率分配混合模式之研究,清大工業工程所碩士論文
     黃瓊玉(1990),論混合常態之可識別性,政大統計所碩士論文
zh_TW