Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 GFSR亂數產生器的研究
作者 范雅燕
貢獻者 李子壩
范雅燕
日期 1990
1989
上傳時間 3-May-2016 14:13:56 (UTC+8)
摘要 論文摘要
     無論是在社會科學或是自然科學的研究中,經常會面對複雜難解的問題,需要利用電腦模擬一些自然狀態,此時亂數就會被應用來增加其可靠性,被少人為主觀的控制因素。
     1973年Lewis & Payne 提出G F S R方法,這個方法所產生的擬隨機序列yt=O. atat+d........., t= 1 , 2 , .........。可以得到較線性除模法更長週期的序列,且可以改善在除模法中變數個數愈多,效果愈差的缺點,我們對此作理論上探討。
     此外,我們比較幾個G F S R 的實際製作演算法討論G F S R 的優缺點。最後本文將探討有關此產生器的應用,如在部份判別分析及在K - S 統計量的修正上。
參考文獻 [l] A.C. Arvillias and D.G. Maritsas (1978) "Partitioning the Period of a Class of
     m-Sequence and Application to Pseudorandom Number Generation.",Journal of the ACM,
     Vol.25 , pp 675-686
     [2]Alexander Haas (1987)
     "The Multiple Prime Random Number Generator." ACM Transactions on Mathematical Software. Vol.13 .PP 368-381
     [3]R.J.Beckman and M.E.Johnson (1981)
     "A Ranking Procedure for Partial Discriminant Analysis.",Journal of the American Statistical
     Associatjon.Vol.76, pp 671-675
     [4]J.D.Broffitt.R.H.Randles and R.V.Hogg (1976)
     "Distribution-Free Partial Discriminant Analysis.",Journal of the American Statistical
     Association.Vol.7l , pp 934-939
     [5]Bruce Jay Collings (1987)
     "Compound Random Number Generators. ",Journal of the American Association.Vol.82 , pp 525-527
     [6]Bruce Jay Collings and G.Barry Hembree (1986)
     "Initializing Generalized Feedback Shift Register Pseudorandom Number Generators.",
     Journal of the ACH,Vol.33 , pp 706-711
     [7]R.R.Coveyou and R.D.Macpherson (1967)
     "Fourier Analysis of Uniform Random Number Generators.",Journal of the ACH,Vol.14 ,
     pp 100-119
     [8]Gentle and Kennedy (1980)
     Statistical Computing, Published by Marcel Dekker ,New York, Ch 6
     [9]Herbert S. Bright and Richard L. Enison (1979)
     "Quasi-Random Number Sequences from a Long-Period TLP Generator with Remarks on
     Application to Cryptography.",Computing Surveys ,Vol.ll ,pp 357-370
     [10]D . E.Knuth (1981)
     The Art of Computer Programming, V2 : Semi-numericalAlgorithms ,2nd Edition,
     Addison-Wesley, Reading ,Mass.
     [11]T.G.Lewis and W.H. Payne (1973)
     "Generalized Feedback Shift Register Pseudorandom Number Algorithm.",Journal of
     the ACM.Vol.20 .PP 456-468
     [12]W.H.Payne. J.R.Rdbung and T.P.Bogyo(1969)
     "Coding the Lehmer Pseudo-random Number Generator.", Communications of ACM.Vol.12 ?
     pp 85-86
     [13]W.H. Payne and K.L. McMillen (978)
     "Orderly Enumeration of Nonsingular Binary Matrices Applied to Text Encryption.".
     Communications of ACM.Vol.21, pp 259-263 [14]Marsaglia George (1984)
     "A Current View of Randow Number Generation.", Computer Science and Statistics: Sixteenth
     Symposiumon the Interface, Proceedings, pp 3-10
     [15]Marsaglia George and Liang-Huei-Tsay (1985)
     "Matrices and the Structure of Random Number Sequences.",Linear Algebra and its Appliations ,Vol.67,pp 147-156
     [16]Masanori Fushimi (1988)
     "Designing a Uniform Random Number Gererator Whose Subsequences are k-Distributed.",SIAM on Computing,Vol.17 , pp 89-99
     [17]M.Fushimi and S.Tezuka (1983)
     "The k-Distribution of Generalized Feedback Shift Register Pseudorandom Numbers."
     Communications of ACM , Vol.26 , pp 516-523
     [18] L.H.Miller (956)
     "Table of Percentage Points of Kolomogorov Statistics.",Journal of the American
     Statistical Association,Vol.51 , pp 111-121
     [19]Neal Zierler(1959)
     "Linear Recurring Sequence.",SIAM ,Vol.7 ,pp 31-48
     [20]R.C.Tauworthe (1965)
     "Random Numbers Generated by Linear Recurrence modulo Two.",Math. Compo. Vol.19, pp 201-209
     [21]J.P.R. Tootill,W.D.Robinsom and D.J.Eagle(1973)
     "An Asymptatically Random Tausworthe Sequence." Journal of the ACM , Vol.20 , pp 469-481
     [22]M.S.Weiss (1978)
     "Modifications of the Kolomogorov-Smirnov Statistic for use with correlated data.",
     Journal Df the American Statistical Association . Vol.73 .PP 872-875
     [23]何淮中(民76年3月)
     淺論隨機數列的方法,數學傳播11.1
     [24]林茂文(民75年10月)
     時間數列分析與預測,華泰書局
     [25]楊浩二(民73年月)
     多變量統計方法,華泰書局
描述 碩士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005376
資料類型 thesis
dc.contributor.advisor 李子壩zh_TW
dc.contributor.author (Authors) 范雅燕zh_TW
dc.creator (作者) 范雅燕zh_TW
dc.date (日期) 1990en_US
dc.date (日期) 1989en_US
dc.date.accessioned 3-May-2016 14:13:56 (UTC+8)-
dc.date.available 3-May-2016 14:13:56 (UTC+8)-
dc.date.issued (上傳時間) 3-May-2016 14:13:56 (UTC+8)-
dc.identifier (Other Identifiers) B2002005376en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90100-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.abstract (摘要) 論文摘要
     無論是在社會科學或是自然科學的研究中,經常會面對複雜難解的問題,需要利用電腦模擬一些自然狀態,此時亂數就會被應用來增加其可靠性,被少人為主觀的控制因素。
     1973年Lewis & Payne 提出G F S R方法,這個方法所產生的擬隨機序列yt=O. atat+d........., t= 1 , 2 , .........。可以得到較線性除模法更長週期的序列,且可以改善在除模法中變數個數愈多,效果愈差的缺點,我們對此作理論上探討。
     此外,我們比較幾個G F S R 的實際製作演算法討論G F S R 的優缺點。最後本文將探討有關此產生器的應用,如在部份判別分析及在K - S 統計量的修正上。
zh_TW
dc.description.tableofcontents 目錄
     第一章 緒論……1
     第一節 研究動機與目的……1
     第二節 研究範圍……3
     第三節 本文架構……4
     
     第二章 G F S R 的介紹……6
     第一節 G F S R 的起源……6
     第二節 G F S R 的基本性質……12
     第三節 G F S R 的相關重要定理……17
     第四節 G F S R 的特點……28
     
     第三章 G F S R 的製作與檢驗……29
     第一節Lewis & Payne 方法……29
     第二節Collings & Hembree 方法……31
     第三節Fushimi & Tezuka 方法……37
     第四節k - distribution 的測試……38
     第五節G F S R 與統計檢定……44
     
     第四章 應用……55
     第一節 應用於部份判別分析……55
     第二節 K - S 統計量應用於A R (2) …… 64
     第五章 結論……73
     參考資料……75
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005376en_US
dc.title (題名) GFSR亂數產生器的研究zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [l] A.C. Arvillias and D.G. Maritsas (1978) "Partitioning the Period of a Class of
     m-Sequence and Application to Pseudorandom Number Generation.",Journal of the ACM,
     Vol.25 , pp 675-686
     [2]Alexander Haas (1987)
     "The Multiple Prime Random Number Generator." ACM Transactions on Mathematical Software. Vol.13 .PP 368-381
     [3]R.J.Beckman and M.E.Johnson (1981)
     "A Ranking Procedure for Partial Discriminant Analysis.",Journal of the American Statistical
     Associatjon.Vol.76, pp 671-675
     [4]J.D.Broffitt.R.H.Randles and R.V.Hogg (1976)
     "Distribution-Free Partial Discriminant Analysis.",Journal of the American Statistical
     Association.Vol.7l , pp 934-939
     [5]Bruce Jay Collings (1987)
     "Compound Random Number Generators. ",Journal of the American Association.Vol.82 , pp 525-527
     [6]Bruce Jay Collings and G.Barry Hembree (1986)
     "Initializing Generalized Feedback Shift Register Pseudorandom Number Generators.",
     Journal of the ACH,Vol.33 , pp 706-711
     [7]R.R.Coveyou and R.D.Macpherson (1967)
     "Fourier Analysis of Uniform Random Number Generators.",Journal of the ACH,Vol.14 ,
     pp 100-119
     [8]Gentle and Kennedy (1980)
     Statistical Computing, Published by Marcel Dekker ,New York, Ch 6
     [9]Herbert S. Bright and Richard L. Enison (1979)
     "Quasi-Random Number Sequences from a Long-Period TLP Generator with Remarks on
     Application to Cryptography.",Computing Surveys ,Vol.ll ,pp 357-370
     [10]D . E.Knuth (1981)
     The Art of Computer Programming, V2 : Semi-numericalAlgorithms ,2nd Edition,
     Addison-Wesley, Reading ,Mass.
     [11]T.G.Lewis and W.H. Payne (1973)
     "Generalized Feedback Shift Register Pseudorandom Number Algorithm.",Journal of
     the ACM.Vol.20 .PP 456-468
     [12]W.H.Payne. J.R.Rdbung and T.P.Bogyo(1969)
     "Coding the Lehmer Pseudo-random Number Generator.", Communications of ACM.Vol.12 ?
     pp 85-86
     [13]W.H. Payne and K.L. McMillen (978)
     "Orderly Enumeration of Nonsingular Binary Matrices Applied to Text Encryption.".
     Communications of ACM.Vol.21, pp 259-263 [14]Marsaglia George (1984)
     "A Current View of Randow Number Generation.", Computer Science and Statistics: Sixteenth
     Symposiumon the Interface, Proceedings, pp 3-10
     [15]Marsaglia George and Liang-Huei-Tsay (1985)
     "Matrices and the Structure of Random Number Sequences.",Linear Algebra and its Appliations ,Vol.67,pp 147-156
     [16]Masanori Fushimi (1988)
     "Designing a Uniform Random Number Gererator Whose Subsequences are k-Distributed.",SIAM on Computing,Vol.17 , pp 89-99
     [17]M.Fushimi and S.Tezuka (1983)
     "The k-Distribution of Generalized Feedback Shift Register Pseudorandom Numbers."
     Communications of ACM , Vol.26 , pp 516-523
     [18] L.H.Miller (956)
     "Table of Percentage Points of Kolomogorov Statistics.",Journal of the American
     Statistical Association,Vol.51 , pp 111-121
     [19]Neal Zierler(1959)
     "Linear Recurring Sequence.",SIAM ,Vol.7 ,pp 31-48
     [20]R.C.Tauworthe (1965)
     "Random Numbers Generated by Linear Recurrence modulo Two.",Math. Compo. Vol.19, pp 201-209
     [21]J.P.R. Tootill,W.D.Robinsom and D.J.Eagle(1973)
     "An Asymptatically Random Tausworthe Sequence." Journal of the ACM , Vol.20 , pp 469-481
     [22]M.S.Weiss (1978)
     "Modifications of the Kolomogorov-Smirnov Statistic for use with correlated data.",
     Journal Df the American Statistical Association . Vol.73 .PP 872-875
     [23]何淮中(民76年3月)
     淺論隨機數列的方法,數學傳播11.1
     [24]林茂文(民75年10月)
     時間數列分析與預測,華泰書局
     [25]楊浩二(民73年月)
     多變量統計方法,華泰書局
zh_TW