學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 在缺失資料隨機散失的情形下各種插補方法效用之研究
作者 翁彰佑
貢獻者 金建輝
翁彰佑
日期 1990
1989
上傳時間 3-五月-2016 14:14:05 (UTC+8)
參考文獻 [l] Bailar, B. A. , Bailey, L. and Corby, C.A. (1978) :
     "A Comparison of Some Adjustment and Weighting Procedures for Survey Data" , Survey Sampling and Measurement , pp. 175 - 198 , New York: Academic Press.
     [2] Huang Elizabeth T. ( 1984)
     "An Imputation Study for the Monthly Retail Trade Survey" ,
     Proceedings of the Section on Survey Research Methods , American Statistical Association, pp. 610 - 615.
     [3] Jinn, J. H. and Sedransk, J. (1987) :
     "Effect on Secondary Data Analysis of Different Imputation Methods", Proc. Third Annual Census Bureau Research Conference , pp. 509 - 530.
     [4] Jinn, J. H. and Sedransk, J. (1989) :
     "Effect on Secondary Data Analysis of Common Imputation Methods",Sociological Methodology, vol. 19 , pp. 213 - 241.
     [5] Jinn, J. H. and Sedransk, J. (1989) :
     "Effect on Secondary Data Analysis of The Use of Imputed Values The Case Where Hissing Data Are Not Hissing at Random", Proceedings of the Section on Survey Research Methods American Statistical Association.
     [6] Kalton, G. and Kasprzyk, D. (1982)
     "Imputing for Missing Survey Responses", Proc. Sect. Survey Res. Meth, Amer. Statist. Assoc, PP. 22- 33.
     [7] Kalton, G. and Kasprzyk, D. (1986) :
     "The Treatment of Missing Survey Data", June 1986, vol. 12 , No.1, pp. 1-16. Statistics Canada
     [8] Kalton, G. and Kish , L. (1981) :
     "Two Effect Random Imputation Procedures" , Proc. Sect. Survey Res. Meth Amer. Statist. Assoc , pp. 146 - 151.
     [9] Michaud S. (1986):
     "Weighting vs Imputation : A Simulation Study", Proc. Sect. Survey Res. Meth, Amer Statist Assoc, PP. 316-320.
     [10] Platek, R., Singh, M. P. and Tremblay, V. (1978):
     "Adjustment for Nonresponse in Surveys ", Survey Sampling and Measurement, pp. 157 - 174 , New York : Academic Press.
     [11] Sande, I. G. (1982):
     "Imputation in Surveys : Coping With Reality" , The American Statistician ,
     August 1982 , vol. 36 , No.3, part1 , PP. 145 - 152.
     [12] Santos , R. L. (1981 b):
     "Effects of Imputation on Regression Coefficients" , Proc. Sect. Survey Res. Meth., Amer, Statist, Assoc, pp.140 - 145
描述 碩士
國立政治大學
統計學系
資料來源 http://thesis.lib.nccu.edu.tw/record/#B2002005380
資料類型 thesis
dc.contributor.advisor 金建輝zh_TW
dc.contributor.author (作者) 翁彰佑zh_TW
dc.creator (作者) 翁彰佑zh_TW
dc.date (日期) 1990en_US
dc.date (日期) 1989en_US
dc.date.accessioned 3-五月-2016 14:14:05 (UTC+8)-
dc.date.available 3-五月-2016 14:14:05 (UTC+8)-
dc.date.issued (上傳時間) 3-五月-2016 14:14:05 (UTC+8)-
dc.identifier (其他 識別碼) B2002005380en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/90104-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description.tableofcontents 目錄
     第一章 緒論
     第一節 研究動機與目的……1
     第二節 文獻回顧……2
     第二章 相關符號之定義與各種插補法之簡介
     第一節 相關符號之定義……3
     第二節 插補方法之簡介……6
     第三章 各種插補方法對統計量之影響
     第一節 平均插補法 MO( Mean Imputation Overall ) ……7
     第二節 隨機插補法RI ( Random Imputation Overall ) ……8
     第三節 分層平均插補法MC ( Mean Imputation with Cells ) ……9
     第四節 分層隨機插補法RC ( Random Imputation with Cells ) ……10。
     第五節 簡單迴歸插補法RG ( Simple Regression Predication Imputation ) ……12
     第六節 隨機迴歸插補法RRS. RRN ( Random Regression Imputation ) ……13
     第四章 綜合比較方法及實證分析
     第一節 綜合比較方法……15
     第二節 資料來源……17
     第三節 實證結果……20
     第五章 結論與建議……22
     附錄……24
     參考文獻……90
     
     表目錄
     表4.3.1 SIC = 1 在不同的缺失率下,以各種插補法所求得的βoc 之期望值與其偏度……34
     表4.3.2 SIC = 1 在不同的缺失率下,以各種插補法所求得的β1c之期望值與其偏度……38
     表4.3.3 SIC = 4 在不同的缺失率下,以各種插補法所求得的βoc之期望值與其偏度……42
     表4.3.4 SIC = 4 在不同的缺失率下,以各種插補法所求得的β1c之期望值與其偏度…… 46
     表4.3.5 SIC = 1 在不同的缺失率下,以各種插補法所求得的σc之期望值與其偏度…… 50
     表4.3.6 SIC = 4 在不同的缺失率下,以各種插補法所求得的σc之期望值與其偏度……54
     表4.3.7 SIC = 1 在不同的缺失率下,以各種插補法所求得的βoc之變異數……58
     表4.3.8 SIC = 1 在不同的缺失率下,以各種插補法所求得的β1c之變異數…… 61
     表4.3.9 SIC = 4 在不同的缺失率下,以各種插補法所求得的βoc之變異數……64
     表4.3.10 SIC = 4 在不同的缺失率下,以各種插補法所求得的β1c之變異數……67
     表4.3.11 SIC = 1 在不同的缺失率下,以各種插補法所求得的Q12之值……70
     表4.3.12 SIC = 1 在不同的缺失率下,以各種插補法所求得的Q22之值……73
     表4.3.13 SIC = 4 在不同的缺失率下,以各種插補法所求得的Q12之值……76
     表4.3.14 SIC = 4 在不同的缺失率下,以各種插補法所求得的Q22之值……79
     圖目錄
     圖一 SIC = 1 E(βoc )的偏度與缺失率之關係圖…… 82
     圖二 SIC = 1 E(β1c)的偏度與缺失率之關係圖……82
     圖三 SIC = 4 E(βoc) 的偏度與缺失率之關係圖……83
     圖四 SIC = 4 E(β1c ) 的偏度與缺失率之關係圖……83
     圖五 SIC = 1 E(σc2) 與缺失率之關係圖…… 84
     圖六 S IC = 1 E(σc2) 的相對偏度與缺失率之關係圖……84
     圖七 SIC = 4 E(σc2) 與缺失率之關係圖……85
     圖八 SIC = 4 E(σc2) 的相對偏度與缺失率之關係圖……85
     圖九 SIC = 1 Var(βoc) 與缺失率之關係圖……86
     圖十 SIC = 1 Var(β1c) 與缺失率之關係圖……86
     圖十一 SIC = 4 Var(βoc) 與缺失率之關係圖…… 87
     圖十二 SIC = 4 Var(β1c)與缺失率之關係圖……87
     圖十三 SIC = 1 Q12 與缺失率之關係圖……88
     圖十四 SIC = 1 Q22 與缺失率之關係圖……88
     圖十五 SIC = 4 Q12 與缺失率之關係圖…… 89
     圖十六 SIC = 4 Q22 與缺失率之關係圖……89
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#B2002005380en_US
dc.title (題名) 在缺失資料隨機散失的情形下各種插補方法效用之研究zh_TW
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [l] Bailar, B. A. , Bailey, L. and Corby, C.A. (1978) :
     "A Comparison of Some Adjustment and Weighting Procedures for Survey Data" , Survey Sampling and Measurement , pp. 175 - 198 , New York: Academic Press.
     [2] Huang Elizabeth T. ( 1984)
     "An Imputation Study for the Monthly Retail Trade Survey" ,
     Proceedings of the Section on Survey Research Methods , American Statistical Association, pp. 610 - 615.
     [3] Jinn, J. H. and Sedransk, J. (1987) :
     "Effect on Secondary Data Analysis of Different Imputation Methods", Proc. Third Annual Census Bureau Research Conference , pp. 509 - 530.
     [4] Jinn, J. H. and Sedransk, J. (1989) :
     "Effect on Secondary Data Analysis of Common Imputation Methods",Sociological Methodology, vol. 19 , pp. 213 - 241.
     [5] Jinn, J. H. and Sedransk, J. (1989) :
     "Effect on Secondary Data Analysis of The Use of Imputed Values The Case Where Hissing Data Are Not Hissing at Random", Proceedings of the Section on Survey Research Methods American Statistical Association.
     [6] Kalton, G. and Kasprzyk, D. (1982)
     "Imputing for Missing Survey Responses", Proc. Sect. Survey Res. Meth, Amer. Statist. Assoc, PP. 22- 33.
     [7] Kalton, G. and Kasprzyk, D. (1986) :
     "The Treatment of Missing Survey Data", June 1986, vol. 12 , No.1, pp. 1-16. Statistics Canada
     [8] Kalton, G. and Kish , L. (1981) :
     "Two Effect Random Imputation Procedures" , Proc. Sect. Survey Res. Meth Amer. Statist. Assoc , pp. 146 - 151.
     [9] Michaud S. (1986):
     "Weighting vs Imputation : A Simulation Study", Proc. Sect. Survey Res. Meth, Amer Statist Assoc, PP. 316-320.
     [10] Platek, R., Singh, M. P. and Tremblay, V. (1978):
     "Adjustment for Nonresponse in Surveys ", Survey Sampling and Measurement, pp. 157 - 174 , New York : Academic Press.
     [11] Sande, I. G. (1982):
     "Imputation in Surveys : Coping With Reality" , The American Statistician ,
     August 1982 , vol. 36 , No.3, part1 , PP. 145 - 152.
     [12] Santos , R. L. (1981 b):
     "Effects of Imputation on Regression Coefficients" , Proc. Sect. Survey Res. Meth., Amer, Statist, Assoc, pp.140 - 145
zh_TW