學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 臺指選擇權各種空部份組合交易策略下的實現利潤 作者 陳威任 貢獻者 杜化宇
陳威任關鍵詞 空部位
選擇權
組合部位
波動率風險溢酬日期 2009 上傳時間 9-五月-2016 15:15:45 (UTC+8) 摘要 臺灣於民國九十年推出臺灣股票指數選擇權後,作為健全市場、並提供投資人充分避險管道之商品,卻少有研究探討臺灣股票指數選擇權在Delta中立交易策略下的實現報酬。在國外市場的交易策略實證研究中,發現利用賣出選擇權的Delta中立交易策略,在各種到期日及價性下,實現報酬皆有顯著的獲利空間。但是相關實證研究,模擬策略的交易資料多取樣於經濟穩定、民生承平的年代。在遭逢次級房貸金融風暴襲捲的時代背景丕變,我們感興趣的是國內選擇權的交易策略是否依然有在經濟穩定時期的可觀顯著利潤;若其獲利依然顯著可觀,則相較經濟風暴尚未發生的年代,交易策略的報酬是增是減,造成此改變的理由是什麼?在經由設計交易策略實證探究後,本研究發現,在各種避險交易策略的實現報酬在次級房貸金融風暴發生期間,獲利金額與實現報酬在多數情況下反而更高、且更為顯著。 參考文獻 參考文獻中文部份1. 王琮賢, (2004)“波動率風險溢酬之實證研究-以臺灣認購權證為例” 國立台灣科技大學碩士學位論文2. 游舒淳, (2006)”不同模型之股價波動度預測比較”國立中央大學財務金融研究所碩士學位論文3. 黃崇銓, (2007)”Model-free隱含波動率價差之遠期資訊”國立中央大學財務金融研究所碩士學位論文英文部份1. Bakshi, G., & Kapadia, N.,(2003) ” Delta-hedged gains and the negative marketvolatility risk premium.” Review of Financial Studies, Vol. 16, P. 527–5662. Bakshi, G., C. Cao, and Z. Chen,(1997) “How often does the call move in theopposite direction to the underlying?” Review of Financial Studies, Vol. 13, P.549-5843. Bates, D., (2000) “Post-87 crash fears in S&P 500 futures options” Journal ofEconometrics, Vol. 94, P181-2384. Bertsimas, D., L. Kogan, and A. Lo, (2000) “When is time continuous,” Journalof Financial Economics, Vol. 55, P. 173-2045. Blair, B., S. H. Poon, and S. J. Taylor, (2001) “Forecasting S&P 100 volatility: theincremental information content of implied volatility and high frequency indexreturns” Journal of Econometrics, Vol. 105, P. 5–266. Bollen N., and Whaley R., (2004) “Does net buying pressure affect the shape ofimplied volatility functions?” Journal of Finance, Vol. 59, P. 711-7537. Breeden, D. T., and R. H. Litzenberger, (1978) “Prices of state-contingent claimsimplicit in option prices” Journal of Business, Vol. 51, P. 621–6518. Britten-Jones, M., and A. Neuberger, (2000) “Option prices, implied priceprocesses, and stochastic volatility,” Journal of Finance, Vol. 55, P. 839–8669. Buraschi, A., and J., (2001) “The price of a smile: hedging and spanning in optionmarkets” Review of Financial Studies, Vol. 14, P. 495-52710. Canina, L., and S. Figlewski, (1993) “The informational content of impliedvolatility” Review of Financial Studies, Vol. 6, P. 659–681.11. Christensen, B. J., and N. R. Prabhala, (1998) “The relation between implied andrealized volatility” Journal of Financial Economics, Vol. 50, P. 125–15012. Christensen, B. J., C. S. Hansen, and N. R. Prabhala, 2001, ‘‘The telescopingoverlap problem in options data,’’ working paper, University of Aarhus andUniversity of Maryland.13. Coval, J., and T. Shumway, (2001) “Expected option returns” Journal of Finance,Vol. 56, P. 983–1009.14. Day, T. E., and C. M. Lewis, (1992) “Stock market volatility and the informationcontent of stock index options” Journal of Risk, Vol. 4, P. 29–46.15. Derman, E., I. Kani, and N. Chriss, (1996) “Implied trinomial trees of thevolatility smile” Journal of Derivatives, Vol. 3, P. 7–2216. Driessen, J., and Maenhout, P. (2004). “A portfolio perspective on option pricinganomalies” working paper, University of Amsterdam Business School17. Ederington, L. H., and Wei G., (2002) “Is implied volatility an informationallyefficient and effective predictor of future volatility?” Journal of Risk, Vol. 4, P.29–46.18. Fleming, J., (1998) “The quality of market volatility forecast implied by S&P 100index option prices” Journal of Empirical Finance, Vol. 5, P. 317–34519. French, K., W. Schwert, and R. Stambaugh, (1987) “Expected stock returns andvolatility” Journal of Financial Economics, Vol. 19, P. 3-2920. George J. Jiang & Yisong S. Tian, (2005) “The model-free implied volatility andits information content” The Review of Financial Studies, Vol. 18, P. 1305-134221. Glosten, L., R. Jagannathan, and D. Runkle, (1993) “On the relation between theexpected value and the volatility of the nominal excess returns on stock” Journalof Finance, Vol. 48, P. 1779-180122. Hansen, P. R., and A. Lunde, 2004, ‘‘Realized variance and market microstructurenoise,’’ Journal of Business and Economic Statistics, Vol. 24, P. 127-16123. Jackwerth, J., and M. Rubinstein, (1996) “Recovering probability distributionsfrom option prices” Journal of Finance, Vol. 51, P. 1611-163124. Jiang J., and Y. Tian, (2005) “The model-free implied volatility and itsinformation content” Reviews of Financial Studies, Vol. 18, P. 1305-134225. Jorion, P., (1995) “Predicting volatility in the foreign exchange market” Journalof Finance, Vol. 50, P. 507–52826. Lamoureux, C. G., and W. D. Lastrapes, (1993) “Forecasting stock-returnvariance: toward an understanding of stochastic implied volatilities” Review ofFinancial Studies, Vol. 6, P. 293–326.27. Ledoit, O., and P. Santa-Clara, (1998) “Relative pricing of options with stochasticvolatility,” Working paper, University of California at Los Angeles.28. Pan, J., (2002) “The jump-risk premia implicit in options: evidence from anintegrated time-series study.” Journal of Financial Economics, Vol. 63, P. 3-5029. Pong, S., M. B. Shackleton, S. J. Taylor, and X. Xu, (2004) “Forecastingsterling/dollar volatility: a comparison of implied volatility and AR(FI)MAmodels” Journal of Banking and Finance, Vol. 28, P. 2541–256330. Rubinstein, M., (1998) “Edgeworth binomial trees” Journal of Derivatives, Vol. 5,P. 20–2731. Rubinstein, M., (1994) “Implied binomial trees” Journal of Finance, Vol. 49, P.771–818.32. Simon, David, P. (2006) “An examination of short QQQ option trades” TheJournal of Futures Markets, Vol. 27, No. 8, P. 739–77033. Zhou, B., 1996, ‘‘High-frequency data and volatility in foreign-exchange rates,’’Journal of Business and Economic Statistics, Vol. 14, P. 45–52. 描述 碩士
國立政治大學
財務管理研究所
95357027資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095357027 資料類型 thesis dc.contributor.advisor 杜化宇 zh_TW dc.contributor.author (作者) 陳威任 zh_TW dc.creator (作者) 陳威任 zh_TW dc.date (日期) 2009 en_US dc.date.accessioned 9-五月-2016 15:15:45 (UTC+8) - dc.date.available 9-五月-2016 15:15:45 (UTC+8) - dc.date.issued (上傳時間) 9-五月-2016 15:15:45 (UTC+8) - dc.identifier (其他 識別碼) G0095357027 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/95131 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 財務管理研究所 zh_TW dc.description (描述) 95357027 zh_TW dc.description.abstract (摘要) 臺灣於民國九十年推出臺灣股票指數選擇權後,作為健全市場、並提供投資人充分避險管道之商品,卻少有研究探討臺灣股票指數選擇權在Delta中立交易策略下的實現報酬。在國外市場的交易策略實證研究中,發現利用賣出選擇權的Delta中立交易策略,在各種到期日及價性下,實現報酬皆有顯著的獲利空間。但是相關實證研究,模擬策略的交易資料多取樣於經濟穩定、民生承平的年代。在遭逢次級房貸金融風暴襲捲的時代背景丕變,我們感興趣的是國內選擇權的交易策略是否依然有在經濟穩定時期的可觀顯著利潤;若其獲利依然顯著可觀,則相較經濟風暴尚未發生的年代,交易策略的報酬是增是減,造成此改變的理由是什麼?在經由設計交易策略實證探究後,本研究發現,在各種避險交易策略的實現報酬在次級房貸金融風暴發生期間,獲利金額與實現報酬在多數情況下反而更高、且更為顯著。 zh_TW dc.description.tableofcontents 目錄第一章 緒論.................................................................................................................................6第一節 研究背景與動機................................................................................................6第二節 研究目的...............................................................................................................7第三節 研究架構與流程................................................................................................8第二章 文獻探討與理論基礎............................................................................................. 10第一節 選擇權投資組合實現報酬與波動率風險溢酬................................... 10第二節 波動率指數與隱含波動率.......................................................................... 15第三節 2007~2008年次級房貸事件以及環球金融危機................................. 18第三章 研究方法..................................................................................................................... 21第一節 資料來源與資料的選取............................................................................... 21第二節 波動率的計算與量測.................................................................................... 22第三節 Delta中立選擇權交易策略......................................................................... 29第四節 研究模型相關參數計算............................................................................... 33第四章 實證結果..................................................................................................................... 35第一節 無條件賣出選擇權策略............................................................................... 36第二節 無條件賣出跨式、勒式部位..................................................................... 39第三節 有條件賣出跨式、勒式部位..................................................................... 42第四節 強制停損停利.................................................................................................. 44第五節 小結..................................................................................................................... 45第五章 結論與改進方向....................................................................................................... 47參考文獻........................................................................................................................................... 59 zh_TW dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095357027 en_US dc.subject (關鍵詞) 空部位 zh_TW dc.subject (關鍵詞) 選擇權 zh_TW dc.subject (關鍵詞) 組合部位 zh_TW dc.subject (關鍵詞) 波動率風險溢酬 zh_TW dc.title (題名) 臺指選擇權各種空部份組合交易策略下的實現利潤 zh_TW dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 參考文獻中文部份1. 王琮賢, (2004)“波動率風險溢酬之實證研究-以臺灣認購權證為例” 國立台灣科技大學碩士學位論文2. 游舒淳, (2006)”不同模型之股價波動度預測比較”國立中央大學財務金融研究所碩士學位論文3. 黃崇銓, (2007)”Model-free隱含波動率價差之遠期資訊”國立中央大學財務金融研究所碩士學位論文英文部份1. Bakshi, G., & Kapadia, N.,(2003) ” Delta-hedged gains and the negative marketvolatility risk premium.” Review of Financial Studies, Vol. 16, P. 527–5662. Bakshi, G., C. Cao, and Z. Chen,(1997) “How often does the call move in theopposite direction to the underlying?” Review of Financial Studies, Vol. 13, P.549-5843. Bates, D., (2000) “Post-87 crash fears in S&P 500 futures options” Journal ofEconometrics, Vol. 94, P181-2384. Bertsimas, D., L. Kogan, and A. Lo, (2000) “When is time continuous,” Journalof Financial Economics, Vol. 55, P. 173-2045. Blair, B., S. H. Poon, and S. J. Taylor, (2001) “Forecasting S&P 100 volatility: theincremental information content of implied volatility and high frequency indexreturns” Journal of Econometrics, Vol. 105, P. 5–266. Bollen N., and Whaley R., (2004) “Does net buying pressure affect the shape ofimplied volatility functions?” Journal of Finance, Vol. 59, P. 711-7537. Breeden, D. T., and R. H. Litzenberger, (1978) “Prices of state-contingent claimsimplicit in option prices” Journal of Business, Vol. 51, P. 621–6518. Britten-Jones, M., and A. Neuberger, (2000) “Option prices, implied priceprocesses, and stochastic volatility,” Journal of Finance, Vol. 55, P. 839–8669. Buraschi, A., and J., (2001) “The price of a smile: hedging and spanning in optionmarkets” Review of Financial Studies, Vol. 14, P. 495-52710. Canina, L., and S. Figlewski, (1993) “The informational content of impliedvolatility” Review of Financial Studies, Vol. 6, P. 659–681.11. Christensen, B. J., and N. R. Prabhala, (1998) “The relation between implied andrealized volatility” Journal of Financial Economics, Vol. 50, P. 125–15012. Christensen, B. J., C. S. Hansen, and N. R. Prabhala, 2001, ‘‘The telescopingoverlap problem in options data,’’ working paper, University of Aarhus andUniversity of Maryland.13. Coval, J., and T. Shumway, (2001) “Expected option returns” Journal of Finance,Vol. 56, P. 983–1009.14. Day, T. E., and C. M. Lewis, (1992) “Stock market volatility and the informationcontent of stock index options” Journal of Risk, Vol. 4, P. 29–46.15. Derman, E., I. Kani, and N. Chriss, (1996) “Implied trinomial trees of thevolatility smile” Journal of Derivatives, Vol. 3, P. 7–2216. Driessen, J., and Maenhout, P. (2004). “A portfolio perspective on option pricinganomalies” working paper, University of Amsterdam Business School17. Ederington, L. H., and Wei G., (2002) “Is implied volatility an informationallyefficient and effective predictor of future volatility?” Journal of Risk, Vol. 4, P.29–46.18. Fleming, J., (1998) “The quality of market volatility forecast implied by S&P 100index option prices” Journal of Empirical Finance, Vol. 5, P. 317–34519. French, K., W. Schwert, and R. Stambaugh, (1987) “Expected stock returns andvolatility” Journal of Financial Economics, Vol. 19, P. 3-2920. George J. Jiang & Yisong S. Tian, (2005) “The model-free implied volatility andits information content” The Review of Financial Studies, Vol. 18, P. 1305-134221. Glosten, L., R. Jagannathan, and D. Runkle, (1993) “On the relation between theexpected value and the volatility of the nominal excess returns on stock” Journalof Finance, Vol. 48, P. 1779-180122. Hansen, P. R., and A. Lunde, 2004, ‘‘Realized variance and market microstructurenoise,’’ Journal of Business and Economic Statistics, Vol. 24, P. 127-16123. Jackwerth, J., and M. Rubinstein, (1996) “Recovering probability distributionsfrom option prices” Journal of Finance, Vol. 51, P. 1611-163124. Jiang J., and Y. Tian, (2005) “The model-free implied volatility and itsinformation content” Reviews of Financial Studies, Vol. 18, P. 1305-134225. Jorion, P., (1995) “Predicting volatility in the foreign exchange market” Journalof Finance, Vol. 50, P. 507–52826. Lamoureux, C. G., and W. D. Lastrapes, (1993) “Forecasting stock-returnvariance: toward an understanding of stochastic implied volatilities” Review ofFinancial Studies, Vol. 6, P. 293–326.27. Ledoit, O., and P. Santa-Clara, (1998) “Relative pricing of options with stochasticvolatility,” Working paper, University of California at Los Angeles.28. Pan, J., (2002) “The jump-risk premia implicit in options: evidence from anintegrated time-series study.” Journal of Financial Economics, Vol. 63, P. 3-5029. Pong, S., M. B. Shackleton, S. J. Taylor, and X. Xu, (2004) “Forecastingsterling/dollar volatility: a comparison of implied volatility and AR(FI)MAmodels” Journal of Banking and Finance, Vol. 28, P. 2541–256330. Rubinstein, M., (1998) “Edgeworth binomial trees” Journal of Derivatives, Vol. 5,P. 20–2731. Rubinstein, M., (1994) “Implied binomial trees” Journal of Finance, Vol. 49, P.771–818.32. Simon, David, P. (2006) “An examination of short QQQ option trades” TheJournal of Futures Markets, Vol. 27, No. 8, P. 739–77033. Zhou, B., 1996, ‘‘High-frequency data and volatility in foreign-exchange rates,’’Journal of Business and Economic Statistics, Vol. 14, P. 45–52. zh_TW