dc.description.tableofcontents | 謝辭摘要Abstract目錄圖目錄表目錄1. 緒論-----12. 預備知識與符號定義-----4 2.1 預備知識-----4 2.2 失去部份訊息的類別資料之概似函數-----5 2.3 Dirichlet與Generalized Dirichlet分佈-----63. Bayes法-----8 3.1 後驗分佈與參數估計-----8 3.2 分解-----12 3.2.1 定義與符號-----12 3.2.2 Generalized Dirichlet分佈的分解性質-----15 3.2.3 後驗分佈的分解性質-----184. Quasi-Bayes法-----31 4.1 動機-----31 4.2 參數估計-----32 4.3 收斂性-----35 4.4 模擬討論----Quasi-Bayes法與Bayes法的比較-----35 4.4.1 限制條件-----36 4.4.2 收斂性-Generalized Dirichlet分佈D(b,G,d),G=I-----37 4.4.3 收斂性-Generalized Dirichlet分佈D(b,G,d),G≠I-----44 4.4.4 Quasi-Bayes解使用時機-----605. 實例分析-----63 5.1 實例一-----63 5.2 實例二-----67 5.3 實例三-----716. 結論-----74附錄一-----76附錄二-----78參考文獻-----82圖目錄圖4.1 Bayes法之u的後驗平均數估計值(當u(0)=(0.5,0.3,0.2),E(u)=(0.45,0.4,0.15),b=(13.5,12,4.5))-----39圖4.2 Bayes法之u的後驗平均數估計值(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.2),b=(9,12,9))-----40圖4.3 Bayes法之u的後驗平均數估計值(當u(0)=(0.7,0.23,0.07),E(u)=(0.675,0.27,0.05),b=(13.5,5.5,1))-----41圖4.4 Bayes法之u的後驗平均數估計值(當u(0)=(0.7,0.23,0.07),E(u)=(0.75,0.15,0.1),b=(15,3,2))-----42圖4.5 Bayes(B)法和Quasi-Bayes(Q.B.)法之後驗平均數估計值(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.3),det(G)=0.0864,b=(9,12,9))-----46圖4.6 Bayes法和Quasi-Bayes法之後驗報告機率估計值(當u(0)=(0.5,0.3,0.2),r=(0.37,0.31,0.32),det(G)=0.0864,b=(9,12,9))-----47圖4.7 Bayes法和Quasi-Bayes法之u後驗平均數估計值與u(0)之相對誤差(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.3),det(G)=0.0864,b=(9,12,9))-----47圖4.8 Bayes法和Quasi-Bayes法之後驗報告機率估計值與r之相對誤差(當u(0)=(0.5,0.3,0.2),r=(0.37,0.31,0.32),det(G)=0.0864,b=(9,12,9))-----48圖4.9 Bayes法和Quasi-Bayes法之u的後驗平均數估計值(當u(0)=(0.5,0.3,0.2),E(u)= (0.3,0.4,0.3),det(G)=0.4158,b=(9,12,9))-----49圖4.10 Bayes法和Quasi-Bayes法之u的後驗平均數估計值(當u(0)=(0.5,0.3,0.2),E(u)=(0.4,0.35,0.25),det(G)=0.4158,b=(12,10.5,7.5))-----50圖4.11 Bayes法和Quasi-Bayes法之u的後驗平均數估計值(當u(0)=(0.73,0.197,0.073),E(u)=(0.733,0.2,0.067),det(G)=0.0861,b=(22,6,2))-----52圖4.12 Bayes法和Quasi-Bayes法之報告機率估計值(當u(0)=(0.73,0.197,0.073),r=(0.45,0.29,0.26),det(G)=0.0861,b=(22,6,2))-----52圖4.13 Bayes法和Quasi-Bayes法之u的後驗平均數估計值(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05),det(G)=0.0861,b=(25.5,3,1,5))-----54圖4.14 Bayes法和Quasi-Bayes法之後驗平均數估計值與u(0)之相對誤差(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05),det(G)=0.0861,b=(25.5,3,1.5))-----54圖4.15 Bayes法和Quasi-Bayes法之報告機率估計值(當u(0)=(0.73,0.197,0.073),r=(0.45,0.29,0.26),det(G)=0.0861,b=(25.5,3,1.5))-----55圖4.16 Bayes法和Quasi-Bayes法之報告機率估計值與r之相對誤差(當u(0)=(0.73,0.197,0.073),r=(0.45,0.29,0.26),det(G)=0.0861,b=(25.5,3,1.5))-----55圖4.17 Bayes(B)法和Quasi-Bayes(Q.B.)法之u的後驗平均數估計值(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05),det(G)=0.33983,b=(25.5,3,1.5))-----57圖4.18 Bayes法和Quasi-Bayes法之後驗平均數估計值與u(0)之相對誤差(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05),det(G)=0.3983,b=(25.5,3,1.5))-----57圖4.19 Bayes法和Quasi-Bayes法之報告機率估計值(當u(0)=(0.73,0.197.0.073),r=(0.57,0.23,0.20),det(G)=0.3983,b=(25.5,3,1.5))-----58圖4.20 Bayes法和Quasi-Bayes法之報告機率估計值與r之相對誤差(當u(0)=(0.73,0.197,0.073),r=(0.57,0.23,0.20),det(G)=0.3983,b=(25.5,3,1.5))-----58表目錄表2.1 聯合機率矩陣[μij]-----5表3.1 首m行為對角矩陣之聯合機率矩陣 [μij]-----19表4.1 u之後驗平均數收斂情形(當u(0)=(0.5,0.3,0.2),E(u)=(0.45,0.4,0.15)時)-----39表4.2 u之後驗平均數收斂情形(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.3)時)-----40表4.3 u之後驗平均數收斂情形(當u(0)=(0.7,0.23,0.07),E(u)=(0.675,0.27,0.05)時)-----41表4.4 u之後驗平均數收斂情形(當u(0)=(0.7,0.23,0.07),E(u)=(0.75,0.15,0.1)時)-----42表4.5 u之後驗平均數收斂情形(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.3))-----46表4.6 u之後驗平均數收斂情形(當u(0)=(0.5,0.3,0.2),E(u)=(0.3,0.4,0.3))-----49表4.7 u之後驗平均數收斂情形(當u(0)=(0.5,0.3,0.2),E(u)=(0.4,0.35,0.25))-----50表4.8 u之後驗平均數收斂情形(當u(0)=(0.73,0.197,0.073),E(u)=(0.733,0.2,0.067))-----51表4.9 u之後驗平均數收斂情形(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05))-----53表4.10 u之後驗平均數收斂情形(當u(0)=(0.73,0.197,0.073),E(u)=(0.85,0.1,0.05))-----56表4.11 gm,使得Pr(det(G)≧g)大約大於0.98之最大g值-----62表4.12 使得(請參見全文資料),當N*-----62表4.13 (請參見全文資料)-----62表5.1 維他命C及感冒與否之列聯表(Pauling [1971])-----64表5.2 維他命C及感冒與否的聯合機率矩陣[μij]-----64表5.3 θ(維他命C及感冒與否)的後驗平均數-----65表5.4 以分解法計算θ(維他命C及感冒與否)的先驗平均數-----66表5.5 以分解法計算θ(維他命C及感冒與否)的後驗平均數-----66表5.6 BIE的次數分配表-----68表5.7 BIE的聯合機率矩陣[μij]-----68表5.8 θ(BIE)的後驗平均數(標準差)-----69表5.9 以分解法計算θ(BIE)的先驗平均數(標準差)-----70表5.10 以分解法計算θ(BIE)的後驗平均數(標準差)-----70表5.11 齲齒嚴重程度的聯合機率矩陣[μij]-----73表5.12 Quasi-Bayes法與Bayes法之θ(齲齒嚴重程度)的後驗平均數(α=(1,1,1,1,1,1,1))-----73表5.13 Quasi-Bayes法與Bayes法之θ(齲齒嚴重程度)的後驗平均數(α*=(10,8,10,3.5,4,4,5))-----73 | zh_TW |