學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 異質性投資組合下的改良式重點取樣法
Modified Importance Sampling for Heterogeneous Portfolio
作者 許文銘
貢獻者 劉惠美
許文銘
關鍵詞 投資組合
信用風險
尾端機率
蒙地卡羅法
重點取樣法
改良式重點取樣法
變異數縮減
Portfolio credit risk
Tail probability
Monte Carlo
Importance sampling
Modified importance sampling
Variance reduction
日期 2016
上傳時間 1-七月-2016 14:57:13 (UTC+8)
摘要 衡量投資組合的稀有事件時,即使稀有事件違約的機率極低,但是卻隱含著高額資產違約時所帶來的重大損失,所以我們必須要精準地評估稀有事件的信用風險。本研究係在估計信用損失分配的尾端機率,模擬的模型包含同質模型與異質模型;然而蒙地卡羅法雖然在風險管理的計算上相當實用,但是估計機率極小的尾端機率時模擬不夠穩定,因此為增進模擬的效率,我們利用Glasserman and Li (Management Science, 51(11),2005)提出的重點取樣法,以及根據Chiang et al. (Joural of Derivatives, 15(2),2007)重點取樣法為基礎做延伸的改良式重點取樣法,兩種方法來對不同的投資組合做模擬,更是將改良式重點取樣法推廣至異質模型做討論,本文亦透過變異數縮減效果來衡量兩種方法的模擬效率。數值結果顯示,比起傳統的蒙地卡羅法,此兩種方法皆能達到變異數縮減,其中在同質模型下的改良式重點取樣法有很好的表現,模擬時間相當省時,而異質模型下的重點取樣法也具有良好的估計效率及模擬的穩定性。
When measuring portfolio credit risk of rare-event, even though its default probabilities are low, it causes significant losses resulting from a large number of default. Therefore, we have to measure portfolio credit risk of rare-event accurately. In particular, our goal is estimating the tail of loss distribution. Models we simulate are including homogeneous models and heterogeneous models. However, Monte Carlo simulation is useful and widely used computational tool in risk management, but it is unstable especially estimating small tail probabilities. Hence, in order to improve the efficiency of simulation, we use importance sampling proposed by Glasserman and Li (Management Science, 51(11),2005) and modified importance sampling based on importance sampling which proposed by Chiang et al. (2007 Joural of Derivatives, 15(2),). Simulate different portfolios by these two of simulations. On top of that, we extend and discuss the modified importance sampling simulation to heterogeneous model. In this article, we measure efficiency of two simulations by variance reduction. Numerical results show that proposed methods are better than Monte Carlo and achieve variance reduction. In homogeneous model, modified importance sampling has excellent efficiency of estimating and saves time. In heterogeneous model, importance sampling also has great efficiency of estimating and stability.
參考文獻 1. Bassamboo, A.,Juneja, S.and Zeevi, A. (2008) , “Portfolio Credit Risk with 2. Extremal Dependence: Asymptotic Analysis and Efficient Simulation” , Operations Research, 56(3), 593-606
2. Chiang, M.H., Yueh, M.L., and Hsieh, M.H. (2007), “An Efficient Algorithm for Basket Default Swap Valuation”, Joural of Derivatives, 15(2), 8-19
3. Fuh, C.D., Teng, H.W., and Wang, R.H. (2013), “Efficient Importance Sampling for Rare Event Simulation with Applications”, Technical Report.
4. Glasserman, P. (2004), “Tail Approximations for Portfolio Credit Risk”, Journal of Derivatives, 12, 24-42
5. Glasserman, P. and Li, J. (2005), “Importance Sampling for Portfolio Credit Risk”, Management Science, 51(11), 1643-1656
6. Han,C.H. ,Wu,C.T. (2010), “Efficient Importance Sampling for Estimating Lower Tail Probabilities under Gaussian and Student’s t Distributions”, Preprint. National Tsing-Hua University. 2010
7. Li, D.X. (2000), “On Default Correlation: A Coupla Function Approach”, Journal of Fixed Income, 9, 43-54
8. Nocedal, J. and M. Wright (1999), “Numerical Optimization”. New York: Springer-Verlag
描述 碩士
國立政治大學
統計學系
103354010
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1033540101
資料類型 thesis
dc.contributor.advisor 劉惠美zh_TW
dc.contributor.author (作者) 許文銘zh_TW
dc.creator (作者) 許文銘zh_TW
dc.date (日期) 2016en_US
dc.date.accessioned 1-七月-2016 14:57:13 (UTC+8)-
dc.date.available 1-七月-2016 14:57:13 (UTC+8)-
dc.date.issued (上傳時間) 1-七月-2016 14:57:13 (UTC+8)-
dc.identifier (其他 識別碼) G1033540101en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/98555-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 103354010zh_TW
dc.description.abstract (摘要) 衡量投資組合的稀有事件時,即使稀有事件違約的機率極低,但是卻隱含著高額資產違約時所帶來的重大損失,所以我們必須要精準地評估稀有事件的信用風險。本研究係在估計信用損失分配的尾端機率,模擬的模型包含同質模型與異質模型;然而蒙地卡羅法雖然在風險管理的計算上相當實用,但是估計機率極小的尾端機率時模擬不夠穩定,因此為增進模擬的效率,我們利用Glasserman and Li (Management Science, 51(11),2005)提出的重點取樣法,以及根據Chiang et al. (Joural of Derivatives, 15(2),2007)重點取樣法為基礎做延伸的改良式重點取樣法,兩種方法來對不同的投資組合做模擬,更是將改良式重點取樣法推廣至異質模型做討論,本文亦透過變異數縮減效果來衡量兩種方法的模擬效率。數值結果顯示,比起傳統的蒙地卡羅法,此兩種方法皆能達到變異數縮減,其中在同質模型下的改良式重點取樣法有很好的表現,模擬時間相當省時,而異質模型下的重點取樣法也具有良好的估計效率及模擬的穩定性。zh_TW
dc.description.abstract (摘要) When measuring portfolio credit risk of rare-event, even though its default probabilities are low, it causes significant losses resulting from a large number of default. Therefore, we have to measure portfolio credit risk of rare-event accurately. In particular, our goal is estimating the tail of loss distribution. Models we simulate are including homogeneous models and heterogeneous models. However, Monte Carlo simulation is useful and widely used computational tool in risk management, but it is unstable especially estimating small tail probabilities. Hence, in order to improve the efficiency of simulation, we use importance sampling proposed by Glasserman and Li (Management Science, 51(11),2005) and modified importance sampling based on importance sampling which proposed by Chiang et al. (2007 Joural of Derivatives, 15(2),). Simulate different portfolios by these two of simulations. On top of that, we extend and discuss the modified importance sampling simulation to heterogeneous model. In this article, we measure efficiency of two simulations by variance reduction. Numerical results show that proposed methods are better than Monte Carlo and achieve variance reduction. In homogeneous model, modified importance sampling has excellent efficiency of estimating and saves time. In heterogeneous model, importance sampling also has great efficiency of estimating and stability.en_US
dc.description.tableofcontents 第一章 緒論 1
第二章 文獻探討 4
第三章 研究方法 6
第一節 模型基本假設 6
第二節 重點取樣法 8
第三節 改良式重點取樣法 12
第四節 推廣改良式重點取樣法 13
3-4-1 二因子同質模型 14
3-4-2 多因子同質模型 14
3-4-3 二因子異質模型 14
3-4-4 三因子異質模型 17
第五節 模型之模擬流程 19
3-5-1 單因子同質模型之模擬流程 19
3-5-2 二因子同質模型之模擬流程 21
3-5-3 多因子同質模型之模擬流程 23
3-5-4 二因子異質模型之模擬流程 25
3-5-5 三因子異質模型之模擬流程 27
第四章 數值呈現與模擬比較分析 30
第一節 同質模型模擬結果 30
4-1-1單因子同質模型 30
4-1-2二因子同質模型 37
4-1-3多因子同質模型 44
第二節 異質模型模擬結果 46
4-2-1二因子異質模型 46
4-2-2三因子異質模型 47
第五章 結論 49
附錄 50
參考文獻 60
zh_TW
dc.format.extent 2250338 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1033540101en_US
dc.subject (關鍵詞) 投資組合zh_TW
dc.subject (關鍵詞) 信用風險zh_TW
dc.subject (關鍵詞) 尾端機率zh_TW
dc.subject (關鍵詞) 蒙地卡羅法zh_TW
dc.subject (關鍵詞) 重點取樣法zh_TW
dc.subject (關鍵詞) 改良式重點取樣法zh_TW
dc.subject (關鍵詞) 變異數縮減zh_TW
dc.subject (關鍵詞) Portfolio credit risken_US
dc.subject (關鍵詞) Tail probabilityen_US
dc.subject (關鍵詞) Monte Carloen_US
dc.subject (關鍵詞) Importance samplingen_US
dc.subject (關鍵詞) Modified importance samplingen_US
dc.subject (關鍵詞) Variance reductionen_US
dc.title (題名) 異質性投資組合下的改良式重點取樣法zh_TW
dc.title (題名) Modified Importance Sampling for Heterogeneous Portfolioen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. Bassamboo, A.,Juneja, S.and Zeevi, A. (2008) , “Portfolio Credit Risk with 2. Extremal Dependence: Asymptotic Analysis and Efficient Simulation” , Operations Research, 56(3), 593-606
2. Chiang, M.H., Yueh, M.L., and Hsieh, M.H. (2007), “An Efficient Algorithm for Basket Default Swap Valuation”, Joural of Derivatives, 15(2), 8-19
3. Fuh, C.D., Teng, H.W., and Wang, R.H. (2013), “Efficient Importance Sampling for Rare Event Simulation with Applications”, Technical Report.
4. Glasserman, P. (2004), “Tail Approximations for Portfolio Credit Risk”, Journal of Derivatives, 12, 24-42
5. Glasserman, P. and Li, J. (2005), “Importance Sampling for Portfolio Credit Risk”, Management Science, 51(11), 1643-1656
6. Han,C.H. ,Wu,C.T. (2010), “Efficient Importance Sampling for Estimating Lower Tail Probabilities under Gaussian and Student’s t Distributions”, Preprint. National Tsing-Hua University. 2010
7. Li, D.X. (2000), “On Default Correlation: A Coupla Function Approach”, Journal of Fixed Income, 9, 43-54
8. Nocedal, J. and M. Wright (1999), “Numerical Optimization”. New York: Springer-Verlag
zh_TW