學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 行動政府 行?不行?-- 臺灣群眾對公部門Line公共服務類官方帳號 接受因素的調查分析
Investigating Factors Affecting Adoption M-government in Taiwan: a Case Study of Public Service Line Official Account
作者 黃宇萱
Huang, Yu Hsuan
貢獻者 孫式文
Sun, Se Wen
黃宇萱
Huang, Yu Hsuan
關鍵詞 行動科技
行動化政府(M-government)
科技接受模型(TAM)
資訊內容品質
Line公共服務類官方帳號
Mobile technologies
M-government
Technology acceptance model(TAM)
Information quality
Public Service Line Official Account
日期 2016
上傳時間 1-九月-2016 23:35:49 (UTC+8)
摘要 「行動革命」到來,智慧型手機、平板或各式行動載具滲透人們日常生活,對人類的傳播模式產生了極大的變化。同樣的,這場行動革命,也襲捲到了公部門,「行動化」趨勢改變了政府現有的傳播方式。

在臺灣近年的行動媒介環境中,Line成為最普及的大眾化通訊程式,臺灣公部門也藉Line此行動平臺,試圖突破過往的傳播方式,公部門在Line平臺中的公共服務類官方帳號也先後上線。隨著行動裝置成為不可或缺的工具,這樣的行動官方帳號,更已成為臺灣政府在行動媒體時代資訊發布的重要管道。

基於上述研究背景與動機,本研究擬達成之研究目的為:(1)瞭解臺灣Line公共服務類官方帳號使用者的輪廓形貌;(2)調查臺灣群眾對於Line公共服務類官方帳號的使用行為;(3)瞭解影響臺灣群眾採用Line公共服務類官方帳號的因素;(4)建立並驗證描述「知覺實用性」、「知覺易用性」、「資訊內容品質」與「使用滿意度」之因果關係的假設和觀念性架構。

最終,以436份網路問卷資料,經結構方程模型驗證,本研究的5項假設均成立:Line公共服務類官方帳號中,使用者的「知覺實用性」、「知覺易用性」和「資訊內容品質」,皆對Line公共服務類官方帳號使用者的「使用滿意度」有正向且顯著的相關性。此外,研究中也檢驗出Line公共服務類官方帳號的「知覺易用性」以及「資訊內容品質」皆對於其「知覺實用性」有正向且顯著的關係。其中「知覺實用性」,是影響使用者採用Line公共服務類官方帳號的最重要因素。

本研究構建並驗證影響臺灣群眾對Line公共服務類官方帳號採用之因果模型,當中各構面之間皆具顯著相關,因此,以TAM為基礎,並加入「資訊內容品質」 的擴增模型,在預測臺灣群眾對Line公共服務類官方帳號的採用上,具有顯著效果。
The development of mobile access technologies and the rapid growth of mobile broadband along with explosion of the mobile application ecosystem have created a new communication channel between the public administration and citizens. With mobile devices being one of the main tools of communication, Taiwan government agencies are increasingly using Line, one of the most popular messaging Apps in Taiwan, in a bid to increase effective communication with their citizens. Therefore, the purpose of the paper is to (1)understand the behavioral and demographic attributes of the Public Service Line Official Account users; (2)propose an integrated model of Public Service Line Official Account acceptance by integrating perceived usefulness, perceived ease of use from Technology Acceptance Model(TAM), information quality theory and user satisfaction theory.

The model and relationships were tested and validated with the Structural Equation Modeling(SEM), using data gathered from 436 users of Public Service Line Official Account in Taiwan. The results suggest that user satisfaction is directly influenced by perceived usefulness, perceived ease of use and information quality, whilst perceived usefulness is directly influenced by perceived ease of use and information quality. In addition, perceived usefulness to be a major influence on the adoption of Public Service Line Official Account in Taiwan.The implications of these findings are discussed.
參考文獻 一、中文部分
〈拚「世界共同語言」 LINE衝3億用戶〉(2013年8月22日)。《TVBS新聞》,取自http://news.tvbs.com.tw/old-news.html?nid=227244
〈新媒體崛起 兩岸政府沒跟上〉(2014 年 7 月 3 日)。《旺報》,取自http://www.chinatimes.com/newspapers/20140703001083-260310
王志弘譯(2008)。《看不見的城市》。臺北:時報。(原書Calvino, I. [1972]. Invisible Cities,London, UK: Faber and Faber.)
邱皓政(1994)。《量化研究與統計分析》。臺北:五南
邱皓政(2005)。《量化研究法(一)研究設計與資料處理》。臺北:雙葉書廊。
施旖婕(2013年10月17日)。〈LINE開設3年 突破5億人口大關〉,《蘋果日報》。取自 http://www.appledaily.com.tw/realtimenews/article/new/20140813/450865/
莊丙農(2015 年 9 月 1 日)。〈LINE@生活圈,註冊破20萬〉,《中時電子報》。取自 http://www.chinatimes.com/realtimenews/20150901003742-260410
資策會( 2015 )。《2015年第二季臺灣網路、行動調查數據報告》。取自資策會網頁http://www.find.org.tw/market_info.aspx?n_ID=8509
劉佳鑫(2013 年 4 月)。〈再見了,小綠人誰是下一個通訊軟體霸主?〉,《動腦雜誌》。取自 http://www.brain.com.tw/news/articlecontent?sort=&ID=18494
羅之盈(2013年7月)。〈虛實整合再進化~迎接O2O大商務時代〉,《數位時代》。取自 http://webcache.googleusercontent.com/search?q=cache:bQ7cKZVhjjYJ:mcr.nccu.edu.tw/2011_style.pdf+&cd=1&hl=zh-TW&ct=clnk&gl=tw&lr=lang_en%7Clang_zh-TW

二、西文部分
Agarwal, R., & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of New Information Technologies? Decision Sciences, 30(2), 361-391.
Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44, 263-275.
Ajzen, I. (1985) From intentions to actions: A theory of planned behavior, In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11-39). New York, NY: Springer Verlag.
Aladwani, A.M. (2002). The development of two tools for measuring the easiness and usefulness of transactional Web sites. European Journal of Information Systems, 11(3), 223-234.
Al-Debei, M.M., Jalal, D., & Al-Lozi, E. (2013). Measuring web portals success: a respecification and validation of the DeLone and McLean information systems success model. International Journal of Business Information Systems. 14(1), 96-133.
Algahtani, A.F. (2011). Evaluating the Effectiveness of the E-learning Experience in Some Universities in Saudi Arabia from Male Students Perceptions., Retrieved from http://etheses.dur.ac.uk/3215/1/Abdullah`sThesis.pdf?DDD29+
Al-Hujran, O. (2012). Toward The Utilization Of M-Government Services In Developing Countries: A Qualitative Investigation. International Journal of Business and Social Science, 3 (5), 155-160.
Al-Khamayseh, S., E. Lawrence & A. Zmijewska(2006). Towards Understanding Success Factors in Interactive Mobile Government. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.3319&rep=rep1&type=pdf
Al-Khouri, A.M. (2012). Customer Relationship Management: Proposed Framework from a Government Perspective. Journal of Management and Strategy, 3(4), 34-54.
Amin, H., Mohd. R. A., Hamid, S., Lada, S. & Anis, Z. (2008). The adoption of mobile banking in Malaysia: The case of Bank Islam Malaysia Berhad. International Journal of Business and Society, 9(2), 43-53.
Anderson, J.C. and Gerbing D.W. (1988): Structural Equation Modeling in Practice: A Review and Recommended Two Step Approach. Psychological Bulletin, 103, 411-423.
Au, N., Ngai, E. W. T., & Cheng, T. C. E.(2008). Extending the Understanding of End User Information Systems Satisfaction Formation: An Equitable Needs Fulfillment Model Approach. MIS Quarterly(32)1, 43–66.
Bagozzi, R. P. & Y. Yi (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science,16,74-94.
Ballou, D. P., Wang, R., Pazer, H.L., & Tayi G.K. (1998) . Modelling Information Manufacturing Systems to Determine Information Product Quality. Management Science, 44(4), 462–484.
Bani Ali, A. S. & Money, W. H. (2008). Impact of organizational and project factors on acceptance and usage of project management software and perceived project success. Project Management Journal, 39(2), 5-33.
Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117.
Baron, S., Patterson, A., & Harris, K(2006). Beyond technology acceptance: understanding consumer practice. International Journal of Service Industry Management, 17(2), 111–135.
Benbasat, I. & Barki, H. (2007). Quo vadis TAM. Journal of the Association for Information Systems, 8, 211–218.
Bitner, Mary J. & Amy R.(1994). Encounter Satisfaction versus Overall Satisfaction Versus Quality. In Rust T. & Oliver L. (Ed.)Service Quality: New Directions in Theory and Practice( pp. 72–84). New York, NY:Sage Publications Inc.
Brackett, L. K., & Carr, B. N.(2001). Cyberspace Advertising vs. Other Media: Consumer vs. Mature Student Attitudes. Journal of Advertising Research. 41(5), 23-33.
Brücher, H., & Baumberger, P. (2003). Using Mobile Technology to Support eDemocracy. Paper presented at the Proceedings of the 36th Hawaii International Conference on System Sciences, Hawaii, HI.
Carroll, J. (2005). Risky Business: Will Citizens Accept M-government in the Long Term? Retrieved from http://mobility.grchina.com/lab/Archives/EuromGov2005/PDF/9_R376JC.pdf
Carroll, J. (2005). Risky Businesss: Will Citizens Accept M-government in the Long Term? In I. Kushchu, & M. H. Kuscu (Ed.), Proceedings of the Euro mGov (pp. 77-87). Brighton, UK: Mobile Government Consortium International Publications.
Cantwell, B.(2002). Why Technical Breakthroughs Fail: A History of Public Concern with Emerging Technologies, Working Report, Auto-ID Center, MIT, Cambridge (MA).
Chismar, W. G. & Wiley-Patton, S. (2002). Does the Extended Technology Acceptance Model Apply to Physicians? Paper presented at the proceedings of the 26th Conference of the American Medical Informatics Association Symposium, San Antonio, TX.
Chong, A. Y. L. (2013). Mobile commerce usage activities: The roles of demographic and motivation variables. Technological Forecasting and Social Change, 80 (7), 1350–1359.
Chong, A. Y. L. (2013). Predicting M-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40 (2), 523–530.
Chun, S. A., Shulman, S., Sandoval, R., & Hovy, E. (2010). Government 2.0: Making connections between citizens, data and government. Information Polity, 15(1/2), 1-9.
Comrey, A. L. (1973). A first course in factor analysis. New York: Academic Press.
Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: Harper &Row.
Cruz, P., L. B. F. Neto, P. Munoz-Gallego, & T. Laukkanen. (2010). Mobile banking rollout in emerging markets: Evidence from Brazil. International Journal of Bank Marketing, 28(5), 342-371.
Dasgupta, S., R. Paul, & S. Fuloria.(2011). Factors affecting behavioral intentions towards mobile banking usage: Empirical evidence from India. Romanian Journal of Marketing, 3(1), 6-28.
Davis, F.D. (1989). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. In F.D. Davis (Eds.), Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology (pp. 319-340). Cambridge, MA: ,Sloan School of Management, MIT.
Davis, F.D., Bagozzi, R.P.,& Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science ,35(8), 982-1003.
DeLone, W., & McLean, E.(2003). The DeLone and McLean Model of Information System Success: A Ten-Year Update. Journal of Management Information Systems , 19(4) ,9-30.
Dishaw, M.T. & Strong, D.M. (1999). Extending the Technology Acceptance Model with Task-Technology Fit Constructs. Information and Management, 36(1), 9-21.
Ducoffe, R. H. (1996). Advertising value and advertising on the web. Journal of Advertising Research, 36(5), 21-35.
Eggers, W.D. & Jaffe, J. (2013). Gov on the go: Boosting Public Sector Productivity by Going Mobile. Deloitte University Press. Retrieved from http://dupress.com/articles/gov-on-the-go
Ekelin, A. (2007). The Work to Make eParticipation Work. Doctoral Dissertation Series, 11. Retrieved from: http://www.bth.se/fou/forskinfo.nsf/6753b78eb2944e0ac1256608004f0535/06c223cbd4e0037dc12572dd004a9ca1/$file/Ekelin_diss.pdf
El-Kiki, T. & E. Lawrence (2006). Mobile User Satisfaction and Usage Analysis Model of mGovernment Service. Retrieved from http://www.m4life.org/proceedings/2006/PDF/11_El-Kiki.pdf
eMarketer (2014). Smartphone users worldwide will total 1.75 billion in 2014. Retrieved from: http://www.emarketer.com/Article/Smartphone- Users-Worldwide-Will-Total-175-Billion-2014/1010536#sthash.igY5dhaW. dpuf
Ericsson (2015). Mobility Report. Available online: http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Boston, MA: Addison-Wesley.
Fortunati, L. (2006). User Design and Democratization of the Mobile Phone, First Monday, Web site: http://www.firstmonday.org.
Gao, L., & Bai, X. (2014). An empirical study on continuance intention of mobile social networking services. Asia Pacific Journal of Marketing and Logistics, 26(2), 168–189.
Gao, L., Waechter, K. A., & Bai, X. (2015). Understanding consumers continuance intention towards mobile purchase: A theoretical framework and empirical study – A case of China. Computers in Human Behavior, 53, 249–262.
Gao, T., Rohm, A. J., Sultan, F. & Pagani, M. (2013). Consumers un-tethered: A threemarket empirical study of consumers mobile marketing acceptance, Journal of Business Research, 66 (12), 2536–2544.
Gefen, D., & Straub, D. (2000). The Relative Importance of Perceived Ease-of-Use in IS Adoption: A Study of e-Commerce Adoption, Journal of Association for Information Systems, 1(8), 1-21.
Gefen, D., Karahanna, E, Straub, D.W. (2003). Trust and TAM in online shopping: an integrated model, MIS Quarterly, 27(1), 51-90
Gefen, D., Straub, D. W., & Boudreau, M.C. (2000). Structural Equation Modeling and Regression: Guidelines for Research Practice. Communications of the Association for Information Systems, 4(7), 1-70.
Geoffrey, A. S., & Mcmillan, S. (2005). A success factor model for m-government. Paper presented at the Proceeding of the First European Conference on Mobile Government. Brighton, UK.
Gordon, E. & de Souza e Silva, A. (2011). Net Locality: Why Location Matters in a Networked World. New York, NY: Wiley.
Gorsuch, R. L. (1983). Factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.
Grant, K., Hackney, R., & Edgar, D. (2010). Strategic Information Systems Management.Andover, MA: Cengage Learning.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
Hofmann, S., Räckers M., Beverungen D., & Becker J. (2013). Old Blunders in New Media? How Local Governments Communicate with Citizens in Online Social Networks. Paper presented at the 46th Hawaii International Conference on System Sciences, Hawaii, HI.
Hogg,R., Martignoni,R. & Stanoevska-Slabeva, K. (2007). Understanding Todays Mobile Users Expectations of Tomorrows Mobile Services, paper presented at the 16th IST Mobile and Wireless Communications Summit, Budapest, Hungary.
Hong , S. J., Thong, J. Y. L., Moon, J. Y., & Tam, K.Y. (2008). Understanding the behavior of mobile data services consumers. Info Syst Front, 10, 431-445
Hsu, C.L, Lu, H. P. & Hsu, H.H. (2007). Adoption of the mobile Internet: An empirical study of multimedia message service(MMS), Omega, 35(6), 715-726.
Hung, Y. H., Wang, Y. S. & Chou, S. C. T. (2007). Determinants of User Acceptance of the e-Government Services: The Case of Online Tax Filing and Payment System, Government Information Quarterly 23(1), 97-122.
Igbaria, M., Guimaraes, T., & Davis, G.B. (1995). Testing the Determinants of Microcomputer Usage via a Structural Equation Model. Journal of Management Information Systems.11(4), 87-114.
Igbaria, M., Iivari, J., & Maragahh, H.(1995). Why Do Individuals Use Computer Technology? A Finnish Case Study. Information and Management, 29, 227-238.
Ispir, N.B., & Suher, H.K. (2009) Perceived Ad Clutter Among Young Consumers: New Media Expansion. Business Research Yearbook, 16(1), 64-72.
Jiang, Z., Chan, J.C.F., Tan, B.C.Y., & Chua, W.S (2010). Effects of Website Interactivity on Consumer Involvement and Purchase Intention, Journal of Association of Information Systems, 11(1), 1-5.
Jung, Y., Perez-Mira, B., & Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in human behavior, 25(1), 123-129.
Kargin, B. & Basoglu, N. (2006). Adoption Factors of Mobile Services, Paper presented at the proceedings of the International Conference on Mobile Business, Copenhagen, Denmark.
Kessler, S. (2011). 38% of college students cant go 10 minutes without tech. Retrieved from Mashable Tech. Retrieved from: http://mashable.com/2011/05/ 31/college-tech-device-stats/
Kim, B., Kang, M. & Jo, H. (2014). Determinants of post-adoption behaviors of mobile communications applications: A dual-model perspective. International Journal of Human-Computer Interaction, 30(7), 1–46.
Kim, M., Chung, N., & Lee, C. (2011). The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tourism Management,32, 256–265.
King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755.
Klein, B. D. (2002). When Do users Detect information quality Problems On The World Wide Web? Paper presented at the 8th Americas Conference on Information Systems, (pp. 1101-1103).
Knapp, D. (2015). Global mobile advertising revenue 2014. IAB report. Retrieved from http://www.iab.com/wp-content/uploads/2015/08/Global_mobile_advertising_revenue _2014_report.pdf
Laukkanen, T. (2007).Internet vs. mobile banking: comparing customer value perceptions. Business Process Management Journal, 13(6), 788-797.
Loehlin, J.C., (1992) .Latent Variable Models: An introduction to factor, path and structural analysis(2nd ed.). Hillsdale, New Jersey.
Liao, C. H., Tsou, C. W., & Huang, M. F(2007). Factors influencing the usage of 3G mobile services in Taiwan. Online Information Review, 31(6), 759–774.
Liaw, S.S. & Huang, H.M. (2003). An investigation of user attitudes toward search engines as an information retrieval tool. Computers in Human Behavior, 19(6), 751–765.
Limayem, M., & Hirt, S.G.(2003). Force of Habit and Information Systems Usage: Theory and Initial Validation. Journal of the Association for Information Systems (4)3, 65-97.
Lu, J. (2014). Are personal innovativeness and social influence critical to continue with mobile commerce? Internet Research, 24(2), 134-159.
Luarn, P. & Lin, H. H. (2005) Toward an understanding of the behavioral intention to use mobile banking, Computers In Human Behavior, 21, 873-891.
Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information & Management, 46(3), 190-195.
Marcus, R. (2002). Great Global Grid: Emerging Technology Strategies (1st ed.). Victoria, Canada: Trafford Publishing.
Mathieson, K..(1991) Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior, Information Systems Research 2(3), 173–191.
McMillan, & Downes J. (2000). Defining Interactivity: A Qualitative Identification of Key Dimensions, New Media and Society, 2(2), 157-179.
McMillan, S. (2010). Legal and Regulatory Frameworks for Mobile Government. Paper presented at the Proceedings of mLife 2010 Conferences. Brighton, UK.
Millward Brown (2014): AdReaction 2014 study. (n.d.). Retrieved from:https://www.millwardbrown.com/adreaction/2014/report/Millward-Brown_AdReaction-2014_Global.pdf
Mir, I. (2011). Consumer Attitude Towards M-Advertising Acceptance: A Cross-Sectional Study, Journal of Internet Banking and Commerce, 16(1), 1-22.
Mohd,H., Syed-Mohamad, S. M., & Zaini, B. J. (2005). Correlation between information quality, user acceptance and doctors attitude of EMR System. Retrieved from database (Researchgate): https://www.researchgate.net/publication/228851654_CORRELATION_BETWEEN_INFORMATION_QUALITY_USER_ACCEPTANCE_AND_DOCTORS`ATTITUDE_OF_EMR_SYSTEM.
Moon, J. & Kim, Y. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38, 217-230.
Mueller, R. O. (1997). Structural equation modeling: Back to basics. Structural Equation Modeling, 4, 353–369.
Nam, T. (2011). Toward the New Phase of e-Government: An Empirical Study on Citizens Attitude about Open Government and Government 2.0. Retrieved from Web site: https://www1.maxwell.syr.edu/uploadedFiles/conferences/pmrc/Files/Nam_Toward%20the%20New%20Phase%20of%20E-government.pdf
Norris, D. F. (2010). E-government... not e-governance... not e-democracy: Not now! Not ever? In J. Davies & T. Janowski (Eds.), Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance (pp. 339-346). New York, NY: ACM.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
Okazaki, S. (2006). What do we know about mobile internet adopters? A cluster
analysis. Information & Management, 43, 127-141.
Nyalunga, D. (2006). An enabling environement for public participation in local government. Retrieved from: http://www.ddp.org.za/information-material/articles/
Okazaki, S. & Mendez, F. (2013). Exploring convenience in mobile commerce: Moderating effects of gender, Computers in Human Behavior, 29(3), 1234–1242.
Olson, P. (2013). 10 Predictions for the mobile industry in 2013. Retrieved from: http://www.forbes.com/sites/parmyolson/2013/01/02/10-predictions-for-the-mobile-industry-in-2013/
Pardo, T. A., Nam, T., & Burke, G. B. (2011). E-Government interoperability: Interaction of policy, management, and technology dimensions. Social Science Computer Review, 30(1), 7–23.
Patel, I., & White, G. (2005). M-government: South African approaches and experiences. In I. Kushchu, & M. H. Kuscu (Ed.), Proceeding of the EURO mGOV 2005 (pp. 313-323). Brighton, UK: Mobile Government Consortium International Publications.
Pedro, Gustavo, Z. & Nelson, B. (2013). An application framework for developing collaborative handheld decision-making tools. Behaviour & Information Technology, 33(5), 470-485.
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research,14(3), 224–235.
Poblet, M. (2011). Rule of Law on the go: new developments of mobile governance. Journal of Universal Computer Science, 17(3), 498-512.
Punch, K (1998) Introduction to Social Research: Quantitatie and Qualitative Approaches, London , UK: Sage
Puschel, J., Mazzon, J. A. & Hernandez, J. M. C. (2010). Mobile banking: Proposition of an integrated adoption intention framework, International Journal of Bank Marketing, 28(5), 389-409.
Raftery, T. (2012). Sustainability, Social Media and Big Data. Retrieved from
:http://theenergycollective.com/tom-raftery/138166/sustainability-social-media-and-big-data
Rainie, L., & Wellman, B. (2012). Networked: The new social operating system. Cambridge, MA: The MIT Press.
Rannu, R., Saksing, S., & Mahlakõiv, T. (2010). Mobile Government: 2010 and Beyond White paper. European Union Regional Development Fund. Retrieved from : http://www.mobisolutions.com/files/Mobile Government 2010 and Beyond v100.pdf
Riquelme, H. & Rios, R. E..(2010). The moderating effect of gender in the adoption of mobile banking, International Journal of Bank Marketing, 28(5), 328-341.
Saeed, K., & Helm, S. (2008). Examining the effects of information system characteristics and perceived usefulness on post adoption usage of information systems. Information & Management, 11, 376-386.
Sang, S., Lee, J.D., & Lee, J.(2009). E-government adoption in ASEAN: the case of Cambodia. Internet Research, 19(5), 517–534.
Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103.
Seddon, P.B., Staples, D.S., Patnayakuni, R. & Bowtell, M.J. (2002). The dimensions of information systems success. Communications of the Association for Information Systems, 2(20). Retrieved from http://aisel.aisnet.org/cgi/viewcontent.cgi?article=2519&context=cais
Seddon, P.B., (2007). A Respecification and Extension of the DeLone and McLean Model of IS Success, Information Systems Research, (8)3, 240-253.
Sendecka, L. (2006). Adoption of mobile services--Moderating effects of services information intensity. Abstract retrieved from https://brage.bibsys.no/xmlui/handle/11250/167783?show=full
Shih, H.P.(2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management(41)3, 351-368.
Sicilic, M., Ruiz, S. & Munuera, J. L. (2005). Effects of Interactivity in a Web Site: The Moderating Effects of Need for Cognition, Journal of Advertising, 34(3), 31–45.
Simić, K., Dadić, J., Paunović, L., Milutinović, M., & Bogdanović, Z. (2012). Delivering Mobile Government Services Through Cloud Computing. Retrieved from http://www.fos.unm.si/media/pdf/Delivering_Mobile_Government_Services_Through_Cloud_Computing_maj.pdf
Song, J., & Zahedi, F. M. (2006). Trust in health infomediaries. Decision Support Systems, 43(2), 390-407.
Sutko, D. M., Salis, F., & de Souza e Silva, C. (2011). Mobile Phone Appropriation in the Favelas of Rio de Janeiro, Brazil. New Media & Society, 12 (1), 411-423.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 145-176.
Thunibat Ahmad Al, Nor Azan Mat Zin & Sahari Noraidah (2011). Identifying User Requirements of Mobile Government Services in Malaysia Using Focus Group Method. Journal of e-Government studies and Best Practices, Penang, Malaysia: IBIMA Publishing,
TNS`s Mobile Life 2015 (n.d.). Retrieved from http://www.tnsglobal.com/2013/mobile-life
Trimi, S. & Sheng, H. (2008) Emerging Trends in M-Government, Communications of the ACM, 51(5), 53–58.
Tripathi, S. N., & Siddiqui, M. H. (2008). Effectiveness of mobile advertising: The Indian scenario. Journal for Decision Makers, 33(4), 47-59.
Troshani, I., Rao. S.(2007). Drivers and inhibitors to XBRL adoption: a qualitative approach to build a theory in under-researched areas. International Journal of E-business Research, 3(4). 98-111.
Varnali, K. & Toker, A. (2010). Mobile marketing research : The state of the art. International Journal of Information Management, 30 (2),144–151.
Venkatesh, V. & Morris, M.G. (2000). Why Dont Men Ever to Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1),115-139.
Venkatesh, V., & Davis, F.D.(2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2),186-204.
Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5-34.
Wellman, B.(2001). The Rise of Networked Individualism. in Community Networks Online. London, UK: Taylor & Francis.
Williams, L. J., & Hazer, J. T. (1986). Antecedents and consequences of satisfaction and commitment in turnover models: A re-analysis using latent variable structural equation methods. Journal of Applied Psychology, 71, 219-231.
Yu, J., Ha, I., Choi, M., & Rho, J. (2005). Extending the TAM for t-commerce. Information & Management, 42(7), 965-976.
Zhou, T. & Lu, Y. (2011). The effects of personality traits on user acceptance of mobile commerce, International Journal of Human-Computer Interaction, 27(6), 545–561.
描述 碩士
國立政治大學
新聞學系
99451010
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0099451010
資料類型 thesis
dc.contributor.advisor 孫式文zh_TW
dc.contributor.advisor Sun, Se Wenen_US
dc.contributor.author (作者) 黃宇萱zh_TW
dc.contributor.author (作者) Huang, Yu Hsuanen_US
dc.creator (作者) 黃宇萱zh_TW
dc.creator (作者) Huang, Yu Hsuanen_US
dc.date (日期) 2016en_US
dc.date.accessioned 1-九月-2016 23:35:49 (UTC+8)-
dc.date.available 1-九月-2016 23:35:49 (UTC+8)-
dc.date.issued (上傳時間) 1-九月-2016 23:35:49 (UTC+8)-
dc.identifier (其他 識別碼) G0099451010en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/101050-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 新聞學系zh_TW
dc.description (描述) 99451010zh_TW
dc.description.abstract (摘要) 「行動革命」到來,智慧型手機、平板或各式行動載具滲透人們日常生活,對人類的傳播模式產生了極大的變化。同樣的,這場行動革命,也襲捲到了公部門,「行動化」趨勢改變了政府現有的傳播方式。

在臺灣近年的行動媒介環境中,Line成為最普及的大眾化通訊程式,臺灣公部門也藉Line此行動平臺,試圖突破過往的傳播方式,公部門在Line平臺中的公共服務類官方帳號也先後上線。隨著行動裝置成為不可或缺的工具,這樣的行動官方帳號,更已成為臺灣政府在行動媒體時代資訊發布的重要管道。

基於上述研究背景與動機,本研究擬達成之研究目的為:(1)瞭解臺灣Line公共服務類官方帳號使用者的輪廓形貌;(2)調查臺灣群眾對於Line公共服務類官方帳號的使用行為;(3)瞭解影響臺灣群眾採用Line公共服務類官方帳號的因素;(4)建立並驗證描述「知覺實用性」、「知覺易用性」、「資訊內容品質」與「使用滿意度」之因果關係的假設和觀念性架構。

最終,以436份網路問卷資料,經結構方程模型驗證,本研究的5項假設均成立:Line公共服務類官方帳號中,使用者的「知覺實用性」、「知覺易用性」和「資訊內容品質」,皆對Line公共服務類官方帳號使用者的「使用滿意度」有正向且顯著的相關性。此外,研究中也檢驗出Line公共服務類官方帳號的「知覺易用性」以及「資訊內容品質」皆對於其「知覺實用性」有正向且顯著的關係。其中「知覺實用性」,是影響使用者採用Line公共服務類官方帳號的最重要因素。

本研究構建並驗證影響臺灣群眾對Line公共服務類官方帳號採用之因果模型,當中各構面之間皆具顯著相關,因此,以TAM為基礎,並加入「資訊內容品質」 的擴增模型,在預測臺灣群眾對Line公共服務類官方帳號的採用上,具有顯著效果。
zh_TW
dc.description.abstract (摘要) The development of mobile access technologies and the rapid growth of mobile broadband along with explosion of the mobile application ecosystem have created a new communication channel between the public administration and citizens. With mobile devices being one of the main tools of communication, Taiwan government agencies are increasingly using Line, one of the most popular messaging Apps in Taiwan, in a bid to increase effective communication with their citizens. Therefore, the purpose of the paper is to (1)understand the behavioral and demographic attributes of the Public Service Line Official Account users; (2)propose an integrated model of Public Service Line Official Account acceptance by integrating perceived usefulness, perceived ease of use from Technology Acceptance Model(TAM), information quality theory and user satisfaction theory.

The model and relationships were tested and validated with the Structural Equation Modeling(SEM), using data gathered from 436 users of Public Service Line Official Account in Taiwan. The results suggest that user satisfaction is directly influenced by perceived usefulness, perceived ease of use and information quality, whilst perceived usefulness is directly influenced by perceived ease of use and information quality. In addition, perceived usefulness to be a major influence on the adoption of Public Service Line Official Account in Taiwan.The implications of these findings are discussed.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 研究章節說明 5

第二章 文獻探討 7
第一節 行動革命 7
第二節 行動政府 13
第三節 理論架構 19
第四節 研究架構 30
第五節 研究假設 31

第三章 研究方法 32
第一節 研究對象與抽樣方法 32
第二節 研究變項之操作型定義與衡量 33
第三節 問卷設計 37
第四節 資料分析方法 40

第四章 資料結果與分析 44
第一節 敘述性統計分析 44
第二節 獨立樣本T檢定與變異數分析 56
第三節 驗證性因素分析 67
第四節 結構方程模式分析 74

第五章 結論與建議 82
第一節 LINE公共服務類官方帳號使用者及使用行為 82
第二節 研究結論及意涵 85
第三節 實務建議 89
第四節 研究限制 93
第五節 後續研究建議 93

附 錄 95
參考文獻 109
zh_TW
dc.format.extent 1490308 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0099451010en_US
dc.subject (關鍵詞) 行動科技zh_TW
dc.subject (關鍵詞) 行動化政府(M-government)zh_TW
dc.subject (關鍵詞) 科技接受模型(TAM)zh_TW
dc.subject (關鍵詞) 資訊內容品質zh_TW
dc.subject (關鍵詞) Line公共服務類官方帳號zh_TW
dc.subject (關鍵詞) Mobile technologiesen_US
dc.subject (關鍵詞) M-governmenten_US
dc.subject (關鍵詞) Technology acceptance model(TAM)en_US
dc.subject (關鍵詞) Information qualityen_US
dc.subject (關鍵詞) Public Service Line Official Accounten_US
dc.title (題名) 行動政府 行?不行?-- 臺灣群眾對公部門Line公共服務類官方帳號 接受因素的調查分析zh_TW
dc.title (題名) Investigating Factors Affecting Adoption M-government in Taiwan: a Case Study of Public Service Line Official Accounten_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文部分
〈拚「世界共同語言」 LINE衝3億用戶〉(2013年8月22日)。《TVBS新聞》,取自http://news.tvbs.com.tw/old-news.html?nid=227244
〈新媒體崛起 兩岸政府沒跟上〉(2014 年 7 月 3 日)。《旺報》,取自http://www.chinatimes.com/newspapers/20140703001083-260310
王志弘譯(2008)。《看不見的城市》。臺北:時報。(原書Calvino, I. [1972]. Invisible Cities,London, UK: Faber and Faber.)
邱皓政(1994)。《量化研究與統計分析》。臺北:五南
邱皓政(2005)。《量化研究法(一)研究設計與資料處理》。臺北:雙葉書廊。
施旖婕(2013年10月17日)。〈LINE開設3年 突破5億人口大關〉,《蘋果日報》。取自 http://www.appledaily.com.tw/realtimenews/article/new/20140813/450865/
莊丙農(2015 年 9 月 1 日)。〈LINE@生活圈,註冊破20萬〉,《中時電子報》。取自 http://www.chinatimes.com/realtimenews/20150901003742-260410
資策會( 2015 )。《2015年第二季臺灣網路、行動調查數據報告》。取自資策會網頁http://www.find.org.tw/market_info.aspx?n_ID=8509
劉佳鑫(2013 年 4 月)。〈再見了,小綠人誰是下一個通訊軟體霸主?〉,《動腦雜誌》。取自 http://www.brain.com.tw/news/articlecontent?sort=&ID=18494
羅之盈(2013年7月)。〈虛實整合再進化~迎接O2O大商務時代〉,《數位時代》。取自 http://webcache.googleusercontent.com/search?q=cache:bQ7cKZVhjjYJ:mcr.nccu.edu.tw/2011_style.pdf+&cd=1&hl=zh-TW&ct=clnk&gl=tw&lr=lang_en%7Clang_zh-TW

二、西文部分
Agarwal, R., & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of New Information Technologies? Decision Sciences, 30(2), 361-391.
Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44, 263-275.
Ajzen, I. (1985) From intentions to actions: A theory of planned behavior, In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11-39). New York, NY: Springer Verlag.
Aladwani, A.M. (2002). The development of two tools for measuring the easiness and usefulness of transactional Web sites. European Journal of Information Systems, 11(3), 223-234.
Al-Debei, M.M., Jalal, D., & Al-Lozi, E. (2013). Measuring web portals success: a respecification and validation of the DeLone and McLean information systems success model. International Journal of Business Information Systems. 14(1), 96-133.
Algahtani, A.F. (2011). Evaluating the Effectiveness of the E-learning Experience in Some Universities in Saudi Arabia from Male Students Perceptions., Retrieved from http://etheses.dur.ac.uk/3215/1/Abdullah`sThesis.pdf?DDD29+
Al-Hujran, O. (2012). Toward The Utilization Of M-Government Services In Developing Countries: A Qualitative Investigation. International Journal of Business and Social Science, 3 (5), 155-160.
Al-Khamayseh, S., E. Lawrence & A. Zmijewska(2006). Towards Understanding Success Factors in Interactive Mobile Government. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.3319&rep=rep1&type=pdf
Al-Khouri, A.M. (2012). Customer Relationship Management: Proposed Framework from a Government Perspective. Journal of Management and Strategy, 3(4), 34-54.
Amin, H., Mohd. R. A., Hamid, S., Lada, S. & Anis, Z. (2008). The adoption of mobile banking in Malaysia: The case of Bank Islam Malaysia Berhad. International Journal of Business and Society, 9(2), 43-53.
Anderson, J.C. and Gerbing D.W. (1988): Structural Equation Modeling in Practice: A Review and Recommended Two Step Approach. Psychological Bulletin, 103, 411-423.
Au, N., Ngai, E. W. T., & Cheng, T. C. E.(2008). Extending the Understanding of End User Information Systems Satisfaction Formation: An Equitable Needs Fulfillment Model Approach. MIS Quarterly(32)1, 43–66.
Bagozzi, R. P. & Y. Yi (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science,16,74-94.
Ballou, D. P., Wang, R., Pazer, H.L., & Tayi G.K. (1998) . Modelling Information Manufacturing Systems to Determine Information Product Quality. Management Science, 44(4), 462–484.
Bani Ali, A. S. & Money, W. H. (2008). Impact of organizational and project factors on acceptance and usage of project management software and perceived project success. Project Management Journal, 39(2), 5-33.
Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117.
Baron, S., Patterson, A., & Harris, K(2006). Beyond technology acceptance: understanding consumer practice. International Journal of Service Industry Management, 17(2), 111–135.
Benbasat, I. & Barki, H. (2007). Quo vadis TAM. Journal of the Association for Information Systems, 8, 211–218.
Bitner, Mary J. & Amy R.(1994). Encounter Satisfaction versus Overall Satisfaction Versus Quality. In Rust T. & Oliver L. (Ed.)Service Quality: New Directions in Theory and Practice( pp. 72–84). New York, NY:Sage Publications Inc.
Brackett, L. K., & Carr, B. N.(2001). Cyberspace Advertising vs. Other Media: Consumer vs. Mature Student Attitudes. Journal of Advertising Research. 41(5), 23-33.
Brücher, H., & Baumberger, P. (2003). Using Mobile Technology to Support eDemocracy. Paper presented at the Proceedings of the 36th Hawaii International Conference on System Sciences, Hawaii, HI.
Carroll, J. (2005). Risky Business: Will Citizens Accept M-government in the Long Term? Retrieved from http://mobility.grchina.com/lab/Archives/EuromGov2005/PDF/9_R376JC.pdf
Carroll, J. (2005). Risky Businesss: Will Citizens Accept M-government in the Long Term? In I. Kushchu, & M. H. Kuscu (Ed.), Proceedings of the Euro mGov (pp. 77-87). Brighton, UK: Mobile Government Consortium International Publications.
Cantwell, B.(2002). Why Technical Breakthroughs Fail: A History of Public Concern with Emerging Technologies, Working Report, Auto-ID Center, MIT, Cambridge (MA).
Chismar, W. G. & Wiley-Patton, S. (2002). Does the Extended Technology Acceptance Model Apply to Physicians? Paper presented at the proceedings of the 26th Conference of the American Medical Informatics Association Symposium, San Antonio, TX.
Chong, A. Y. L. (2013). Mobile commerce usage activities: The roles of demographic and motivation variables. Technological Forecasting and Social Change, 80 (7), 1350–1359.
Chong, A. Y. L. (2013). Predicting M-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40 (2), 523–530.
Chun, S. A., Shulman, S., Sandoval, R., & Hovy, E. (2010). Government 2.0: Making connections between citizens, data and government. Information Polity, 15(1/2), 1-9.
Comrey, A. L. (1973). A first course in factor analysis. New York: Academic Press.
Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: Harper &Row.
Cruz, P., L. B. F. Neto, P. Munoz-Gallego, & T. Laukkanen. (2010). Mobile banking rollout in emerging markets: Evidence from Brazil. International Journal of Bank Marketing, 28(5), 342-371.
Dasgupta, S., R. Paul, & S. Fuloria.(2011). Factors affecting behavioral intentions towards mobile banking usage: Empirical evidence from India. Romanian Journal of Marketing, 3(1), 6-28.
Davis, F.D. (1989). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. In F.D. Davis (Eds.), Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology (pp. 319-340). Cambridge, MA: ,Sloan School of Management, MIT.
Davis, F.D., Bagozzi, R.P.,& Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science ,35(8), 982-1003.
DeLone, W., & McLean, E.(2003). The DeLone and McLean Model of Information System Success: A Ten-Year Update. Journal of Management Information Systems , 19(4) ,9-30.
Dishaw, M.T. & Strong, D.M. (1999). Extending the Technology Acceptance Model with Task-Technology Fit Constructs. Information and Management, 36(1), 9-21.
Ducoffe, R. H. (1996). Advertising value and advertising on the web. Journal of Advertising Research, 36(5), 21-35.
Eggers, W.D. & Jaffe, J. (2013). Gov on the go: Boosting Public Sector Productivity by Going Mobile. Deloitte University Press. Retrieved from http://dupress.com/articles/gov-on-the-go
Ekelin, A. (2007). The Work to Make eParticipation Work. Doctoral Dissertation Series, 11. Retrieved from: http://www.bth.se/fou/forskinfo.nsf/6753b78eb2944e0ac1256608004f0535/06c223cbd4e0037dc12572dd004a9ca1/$file/Ekelin_diss.pdf
El-Kiki, T. & E. Lawrence (2006). Mobile User Satisfaction and Usage Analysis Model of mGovernment Service. Retrieved from http://www.m4life.org/proceedings/2006/PDF/11_El-Kiki.pdf
eMarketer (2014). Smartphone users worldwide will total 1.75 billion in 2014. Retrieved from: http://www.emarketer.com/Article/Smartphone- Users-Worldwide-Will-Total-175-Billion-2014/1010536#sthash.igY5dhaW. dpuf
Ericsson (2015). Mobility Report. Available online: http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Boston, MA: Addison-Wesley.
Fortunati, L. (2006). User Design and Democratization of the Mobile Phone, First Monday, Web site: http://www.firstmonday.org.
Gao, L., & Bai, X. (2014). An empirical study on continuance intention of mobile social networking services. Asia Pacific Journal of Marketing and Logistics, 26(2), 168–189.
Gao, L., Waechter, K. A., & Bai, X. (2015). Understanding consumers continuance intention towards mobile purchase: A theoretical framework and empirical study – A case of China. Computers in Human Behavior, 53, 249–262.
Gao, T., Rohm, A. J., Sultan, F. & Pagani, M. (2013). Consumers un-tethered: A threemarket empirical study of consumers mobile marketing acceptance, Journal of Business Research, 66 (12), 2536–2544.
Gefen, D., & Straub, D. (2000). The Relative Importance of Perceived Ease-of-Use in IS Adoption: A Study of e-Commerce Adoption, Journal of Association for Information Systems, 1(8), 1-21.
Gefen, D., Karahanna, E, Straub, D.W. (2003). Trust and TAM in online shopping: an integrated model, MIS Quarterly, 27(1), 51-90
Gefen, D., Straub, D. W., & Boudreau, M.C. (2000). Structural Equation Modeling and Regression: Guidelines for Research Practice. Communications of the Association for Information Systems, 4(7), 1-70.
Geoffrey, A. S., & Mcmillan, S. (2005). A success factor model for m-government. Paper presented at the Proceeding of the First European Conference on Mobile Government. Brighton, UK.
Gordon, E. & de Souza e Silva, A. (2011). Net Locality: Why Location Matters in a Networked World. New York, NY: Wiley.
Gorsuch, R. L. (1983). Factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.
Grant, K., Hackney, R., & Edgar, D. (2010). Strategic Information Systems Management.Andover, MA: Cengage Learning.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
Hofmann, S., Räckers M., Beverungen D., & Becker J. (2013). Old Blunders in New Media? How Local Governments Communicate with Citizens in Online Social Networks. Paper presented at the 46th Hawaii International Conference on System Sciences, Hawaii, HI.
Hogg,R., Martignoni,R. & Stanoevska-Slabeva, K. (2007). Understanding Todays Mobile Users Expectations of Tomorrows Mobile Services, paper presented at the 16th IST Mobile and Wireless Communications Summit, Budapest, Hungary.
Hong , S. J., Thong, J. Y. L., Moon, J. Y., & Tam, K.Y. (2008). Understanding the behavior of mobile data services consumers. Info Syst Front, 10, 431-445
Hsu, C.L, Lu, H. P. & Hsu, H.H. (2007). Adoption of the mobile Internet: An empirical study of multimedia message service(MMS), Omega, 35(6), 715-726.
Hung, Y. H., Wang, Y. S. & Chou, S. C. T. (2007). Determinants of User Acceptance of the e-Government Services: The Case of Online Tax Filing and Payment System, Government Information Quarterly 23(1), 97-122.
Igbaria, M., Guimaraes, T., & Davis, G.B. (1995). Testing the Determinants of Microcomputer Usage via a Structural Equation Model. Journal of Management Information Systems.11(4), 87-114.
Igbaria, M., Iivari, J., & Maragahh, H.(1995). Why Do Individuals Use Computer Technology? A Finnish Case Study. Information and Management, 29, 227-238.
Ispir, N.B., & Suher, H.K. (2009) Perceived Ad Clutter Among Young Consumers: New Media Expansion. Business Research Yearbook, 16(1), 64-72.
Jiang, Z., Chan, J.C.F., Tan, B.C.Y., & Chua, W.S (2010). Effects of Website Interactivity on Consumer Involvement and Purchase Intention, Journal of Association of Information Systems, 11(1), 1-5.
Jung, Y., Perez-Mira, B., & Wiley-Patton, S. (2009). Consumer adoption of mobile TV: Examining psychological flow and media content. Computers in human behavior, 25(1), 123-129.
Kargin, B. & Basoglu, N. (2006). Adoption Factors of Mobile Services, Paper presented at the proceedings of the International Conference on Mobile Business, Copenhagen, Denmark.
Kessler, S. (2011). 38% of college students cant go 10 minutes without tech. Retrieved from Mashable Tech. Retrieved from: http://mashable.com/2011/05/ 31/college-tech-device-stats/
Kim, B., Kang, M. & Jo, H. (2014). Determinants of post-adoption behaviors of mobile communications applications: A dual-model perspective. International Journal of Human-Computer Interaction, 30(7), 1–46.
Kim, M., Chung, N., & Lee, C. (2011). The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tourism Management,32, 256–265.
King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755.
Klein, B. D. (2002). When Do users Detect information quality Problems On The World Wide Web? Paper presented at the 8th Americas Conference on Information Systems, (pp. 1101-1103).
Knapp, D. (2015). Global mobile advertising revenue 2014. IAB report. Retrieved from http://www.iab.com/wp-content/uploads/2015/08/Global_mobile_advertising_revenue _2014_report.pdf
Laukkanen, T. (2007).Internet vs. mobile banking: comparing customer value perceptions. Business Process Management Journal, 13(6), 788-797.
Loehlin, J.C., (1992) .Latent Variable Models: An introduction to factor, path and structural analysis(2nd ed.). Hillsdale, New Jersey.
Liao, C. H., Tsou, C. W., & Huang, M. F(2007). Factors influencing the usage of 3G mobile services in Taiwan. Online Information Review, 31(6), 759–774.
Liaw, S.S. & Huang, H.M. (2003). An investigation of user attitudes toward search engines as an information retrieval tool. Computers in Human Behavior, 19(6), 751–765.
Limayem, M., & Hirt, S.G.(2003). Force of Habit and Information Systems Usage: Theory and Initial Validation. Journal of the Association for Information Systems (4)3, 65-97.
Lu, J. (2014). Are personal innovativeness and social influence critical to continue with mobile commerce? Internet Research, 24(2), 134-159.
Luarn, P. & Lin, H. H. (2005) Toward an understanding of the behavioral intention to use mobile banking, Computers In Human Behavior, 21, 873-891.
Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2009). The impact of use context on mobile services acceptance: The case of mobile ticketing. Information & Management, 46(3), 190-195.
Marcus, R. (2002). Great Global Grid: Emerging Technology Strategies (1st ed.). Victoria, Canada: Trafford Publishing.
Mathieson, K..(1991) Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior, Information Systems Research 2(3), 173–191.
McMillan, & Downes J. (2000). Defining Interactivity: A Qualitative Identification of Key Dimensions, New Media and Society, 2(2), 157-179.
McMillan, S. (2010). Legal and Regulatory Frameworks for Mobile Government. Paper presented at the Proceedings of mLife 2010 Conferences. Brighton, UK.
Millward Brown (2014): AdReaction 2014 study. (n.d.). Retrieved from:https://www.millwardbrown.com/adreaction/2014/report/Millward-Brown_AdReaction-2014_Global.pdf
Mir, I. (2011). Consumer Attitude Towards M-Advertising Acceptance: A Cross-Sectional Study, Journal of Internet Banking and Commerce, 16(1), 1-22.
Mohd,H., Syed-Mohamad, S. M., & Zaini, B. J. (2005). Correlation between information quality, user acceptance and doctors attitude of EMR System. Retrieved from database (Researchgate): https://www.researchgate.net/publication/228851654_CORRELATION_BETWEEN_INFORMATION_QUALITY_USER_ACCEPTANCE_AND_DOCTORS`ATTITUDE_OF_EMR_SYSTEM.
Moon, J. & Kim, Y. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38, 217-230.
Mueller, R. O. (1997). Structural equation modeling: Back to basics. Structural Equation Modeling, 4, 353–369.
Nam, T. (2011). Toward the New Phase of e-Government: An Empirical Study on Citizens Attitude about Open Government and Government 2.0. Retrieved from Web site: https://www1.maxwell.syr.edu/uploadedFiles/conferences/pmrc/Files/Nam_Toward%20the%20New%20Phase%20of%20E-government.pdf
Norris, D. F. (2010). E-government... not e-governance... not e-democracy: Not now! Not ever? In J. Davies & T. Janowski (Eds.), Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance (pp. 339-346). New York, NY: ACM.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
Okazaki, S. (2006). What do we know about mobile internet adopters? A cluster
analysis. Information & Management, 43, 127-141.
Nyalunga, D. (2006). An enabling environement for public participation in local government. Retrieved from: http://www.ddp.org.za/information-material/articles/
Okazaki, S. & Mendez, F. (2013). Exploring convenience in mobile commerce: Moderating effects of gender, Computers in Human Behavior, 29(3), 1234–1242.
Olson, P. (2013). 10 Predictions for the mobile industry in 2013. Retrieved from: http://www.forbes.com/sites/parmyolson/2013/01/02/10-predictions-for-the-mobile-industry-in-2013/
Pardo, T. A., Nam, T., & Burke, G. B. (2011). E-Government interoperability: Interaction of policy, management, and technology dimensions. Social Science Computer Review, 30(1), 7–23.
Patel, I., & White, G. (2005). M-government: South African approaches and experiences. In I. Kushchu, & M. H. Kuscu (Ed.), Proceeding of the EURO mGOV 2005 (pp. 313-323). Brighton, UK: Mobile Government Consortium International Publications.
Pedro, Gustavo, Z. & Nelson, B. (2013). An application framework for developing collaborative handheld decision-making tools. Behaviour & Information Technology, 33(5), 470-485.
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research,14(3), 224–235.
Poblet, M. (2011). Rule of Law on the go: new developments of mobile governance. Journal of Universal Computer Science, 17(3), 498-512.
Punch, K (1998) Introduction to Social Research: Quantitatie and Qualitative Approaches, London , UK: Sage
Puschel, J., Mazzon, J. A. & Hernandez, J. M. C. (2010). Mobile banking: Proposition of an integrated adoption intention framework, International Journal of Bank Marketing, 28(5), 389-409.
Raftery, T. (2012). Sustainability, Social Media and Big Data. Retrieved from
:http://theenergycollective.com/tom-raftery/138166/sustainability-social-media-and-big-data
Rainie, L., & Wellman, B. (2012). Networked: The new social operating system. Cambridge, MA: The MIT Press.
Rannu, R., Saksing, S., & Mahlakõiv, T. (2010). Mobile Government: 2010 and Beyond White paper. European Union Regional Development Fund. Retrieved from : http://www.mobisolutions.com/files/Mobile Government 2010 and Beyond v100.pdf
Riquelme, H. & Rios, R. E..(2010). The moderating effect of gender in the adoption of mobile banking, International Journal of Bank Marketing, 28(5), 328-341.
Saeed, K., & Helm, S. (2008). Examining the effects of information system characteristics and perceived usefulness on post adoption usage of information systems. Information & Management, 11, 376-386.
Sang, S., Lee, J.D., & Lee, J.(2009). E-government adoption in ASEAN: the case of Cambodia. Internet Research, 19(5), 517–534.
Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90-103.
Seddon, P.B., Staples, D.S., Patnayakuni, R. & Bowtell, M.J. (2002). The dimensions of information systems success. Communications of the Association for Information Systems, 2(20). Retrieved from http://aisel.aisnet.org/cgi/viewcontent.cgi?article=2519&context=cais
Seddon, P.B., (2007). A Respecification and Extension of the DeLone and McLean Model of IS Success, Information Systems Research, (8)3, 240-253.
Sendecka, L. (2006). Adoption of mobile services--Moderating effects of services information intensity. Abstract retrieved from https://brage.bibsys.no/xmlui/handle/11250/167783?show=full
Shih, H.P.(2004). An empirical study on predicting user acceptance of e-shopping on the Web. Information & Management(41)3, 351-368.
Sicilic, M., Ruiz, S. & Munuera, J. L. (2005). Effects of Interactivity in a Web Site: The Moderating Effects of Need for Cognition, Journal of Advertising, 34(3), 31–45.
Simić, K., Dadić, J., Paunović, L., Milutinović, M., & Bogdanović, Z. (2012). Delivering Mobile Government Services Through Cloud Computing. Retrieved from http://www.fos.unm.si/media/pdf/Delivering_Mobile_Government_Services_Through_Cloud_Computing_maj.pdf
Song, J., & Zahedi, F. M. (2006). Trust in health infomediaries. Decision Support Systems, 43(2), 390-407.
Sutko, D. M., Salis, F., & de Souza e Silva, C. (2011). Mobile Phone Appropriation in the Favelas of Rio de Janeiro, Brazil. New Media & Society, 12 (1), 411-423.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 145-176.
Thunibat Ahmad Al, Nor Azan Mat Zin & Sahari Noraidah (2011). Identifying User Requirements of Mobile Government Services in Malaysia Using Focus Group Method. Journal of e-Government studies and Best Practices, Penang, Malaysia: IBIMA Publishing,
TNS`s Mobile Life 2015 (n.d.). Retrieved from http://www.tnsglobal.com/2013/mobile-life
Trimi, S. & Sheng, H. (2008) Emerging Trends in M-Government, Communications of the ACM, 51(5), 53–58.
Tripathi, S. N., & Siddiqui, M. H. (2008). Effectiveness of mobile advertising: The Indian scenario. Journal for Decision Makers, 33(4), 47-59.
Troshani, I., Rao. S.(2007). Drivers and inhibitors to XBRL adoption: a qualitative approach to build a theory in under-researched areas. International Journal of E-business Research, 3(4). 98-111.
Varnali, K. & Toker, A. (2010). Mobile marketing research : The state of the art. International Journal of Information Management, 30 (2),144–151.
Venkatesh, V. & Morris, M.G. (2000). Why Dont Men Ever to Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1),115-139.
Venkatesh, V., & Davis, F.D.(2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2),186-204.
Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of Management Information Systems, 12(4), 5-34.
Wellman, B.(2001). The Rise of Networked Individualism. in Community Networks Online. London, UK: Taylor & Francis.
Williams, L. J., & Hazer, J. T. (1986). Antecedents and consequences of satisfaction and commitment in turnover models: A re-analysis using latent variable structural equation methods. Journal of Applied Psychology, 71, 219-231.
Yu, J., Ha, I., Choi, M., & Rho, J. (2005). Extending the TAM for t-commerce. Information & Management, 42(7), 965-976.
Zhou, T. & Lu, Y. (2011). The effects of personality traits on user acceptance of mobile commerce, International Journal of Human-Computer Interaction, 27(6), 545–561.
zh_TW