學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 消除電離層高階項誤差以提昇GPS精密單點定位精度之研究
Improving the Accuracy of GPS Precise Point Positioning by Eliminating the Higher Order Ionospheric Refraction Effects
作者 洪婉綺
Hung, Wan Chi
貢獻者 林老生
Lin, Lao Sheng
洪婉綺
Hung, Wan Chi
關鍵詞 全球定位系統
精密單點定位
電離層高階項誤差
雙頻
Global Positioning System (GPS)
Precise Point Positioning (PPP)
Higher Order Ionospheric Refraction Effects
Dual Frequency
日期 2016
上傳時間 2-九月-2016 00:51:53 (UTC+8)
摘要   全球定位系統(Global Positioning System,GPS)雙頻觀測資料經過處理後,其精密單點定位(Precise Point Positioning,PPP)之精度可達公分等級。然而,對於精度要求較高之應用,如控制測量、地殼變形監測等,公分級精度尚嫌不足。欲進一步提昇PPP之精度,必須考慮電離層第二、三階等高階項誤差之改正。本研究欲探討電離層高階項誤差對於台灣地區PPP之影響,因此本研究之目的為探討(1)不同方向誤差(2)太陽黑子高、低峰期(3)不同季節(4)不同地區,改正電離層高階項誤差前、後之精度效益。

  實驗使用之主要軟體與服務有:(1)RINEX_HO,由巴西São Paulo State University所開發,用以估計電離層高階項誤差,並產製改正電離層高階項誤差後之GPS RINEX觀測檔。(2)gLAB(global navigation satellite system –LABoratory),由gAGE(Research group of Astronomy and GEomatics Technical University of Catalonia in Spain)所開發,可進行PPP及誤差計算。(3)AUPOS,由Geoscience Australia所提供之免費線上GPS資料處理服務,可解算地表上任意位置坐標。實驗資料選擇台灣森泰儀器公司雙星eGPS差分訊號雲端服務網(Civil-NET)中四個觀測站2014年之觀測資料,以及五個台灣衛星追蹤站2009年至2015年之觀測資料,和精密星曆等其他資料。根據實驗結果發現,改正電離層高階項誤差,對於PPP之影響有幾點特性:(1)南北方向定位精度之影響量最大,改正前後差異最大達6.8mm。(2)太陽黑子低峰期觀測資料改正效果較佳,改正精度提昇比例為43%。(3)夏季觀測資料精度提昇效果最佳,提昇比例約為40%。(4)精度提昇效果最佳之測站為墾丁KDNM衛星追蹤站,定位精度提昇之比例約為48%。定位精度提昇效果最佳之時段為太陽黑子低峰時期之夏季,而提昇效果較佳之地區為南部觀測站。同時符合這些條件之觀測資料,在改正電離層高階項誤差後,精度提昇比例可達九成。
  The precise point positioning (PPP) accuracy can reach centimeter level using global positioning system (GPS) dual-frequency data. However, centimeter level accuracy is insufficient for high accuracy applications, such as control surveying, deformation monitoring, etc. To improve the accuracy of PPP, higher order ionospheric refraction effects must be taken into account. To investigate the effects on PPP accuracies in Taiwan caused by higher order ionospheric refraction errors, the purposes of this research are to evaluate the accuracy of PPP after higher order ionospheric refraction errors are corrected (1)of errors in different directions (2)using observation data in low or higher solar activity period (3)using observation data of different seasons (4) using observation data of different areas.

  There are two programs and one service applied in this paper: RINEX_HO, gLAB (global navigation satellite system-LABoratory) and AUPOS. (1)RINEX_HO, developed by São Paulo State University in Brazil, can estimate higher order ionospheric refraction terms and produce a corresponding corrected GPS observation file. (2)gLAB, developed by gAGE (Research group of Astronomy and GEomatics Technical University of Catalonia in Spain), can perform precise point positioning and calculate position errors. (3)AUPOS, provided by Geoscience Australia, can produce coordinates of observation stations. Experiment data sets are the observation data from 4 stations of Civil-NET of year 2014 and from 5 satellite tracking stations of Taiwan region of year 2009 to 2015, precise ephemeris and other data of international global navigation satellite system service (IGS). According to the experiment results, there are several characteristics after correcting higher order ionospheric refraction errors: (1)The most significant effects on the receiver positions occur in the north-south direction, and the largest difference between uncorrected and corrected PPP results is 6.8 mm. (2)The accuracies of corrected PPP results improve when the solar activity is low. About 43% PPP results in low solar activity improve after corrected. (3)Summer observation data have better outcome after higher order ionospheric refraction errors. About 40% of PPP results improve after corrected. (4)The observation data of KDNM station can get better PPP results after corrected. About 48% of PPP results improve after corrected. The best situation of correcting higher order ionospheric refraction errors is the observation data of southern stations in summer when the solar activity is low. Under these conditions, 90% of observation data PPP accuracy improved after correcting higher order ionospheric refraction errors.
參考文獻 一、中文參考文獻
田英國、郝金明、謝建濤、張力洋、薄軍偉,2014,「開源精密單點定位軟體 gLAB 定位精度分析」,『全球定位系統』,39(1):34-36。
朱春春、李征航、屈小川、申小平,2015,「高階電離層延遲對 GPS 雙差觀測值和基線向量的影響」,『大地測量與地球動力學』,35(1):81-86。
李征航,2002,「全球定位系統(GPS)技術的最新進展,第一講:多功能衛星導航定位服務系統」,『測繪資訊與工程』,27(1):19-22。
李征航、吳秀娟,2002a,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(上)」,『測繪資訊與工程』,27(5):34-36。
李征航、吳秀娟,2002b,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(下)」,『測繪資訊與工程』,27(6):31-35。
李軍、高詠梅,2010,「GAMIT, GIPSY 和 BERNESE 软件解算结果的比较研究」,『全球定位系统』,35(3):5-9。
邱冠維,2009,「利用精密單點定位進行GPS浮標近即時精密定位」,國立成功大學測量及空間資訊研究所碩士論文:台南。
林老生,2009,「GPS精密單點定位在地籍測量之應用」,『台灣土地研究』,12(2):1-25。
黃勁松、李征航,2005,『GPS測量與數據處理』,武漢:武漢大學出版社。
黃俊穎,2009,「運用臺灣自主電離層數值模式研究電離層赤道異常現象」,國立中央大學太空科學研究所碩士論文:桃園。
張小紅、劉經南,2006,「基於精密單點定位技術的航空測量應用實踐」,『武漢大學學報資訊科學版』,31(1):19-22。
張明、王莎,2012,「基於PPP技術的震後臺站位移監測與分析」,『測繪資訊與工程』,37(1):2-14。
葉世榕、張雙成、劉經南,2008,「精密單點定位方法估計對流層延遲精度分析」,『武漢大學學報資訊科學版』,33(8):788-791。
詹長根、彭琳、胡凱,2005,「精密單點定位技術在地籍測繪中應用的展望」,『測繪資訊與工程』,30(2):40-41。

二、外文參考文獻
Bassiri, S., and Hajj, G. A., 1993, “Higher-order ionospheric effects on the global positioning system observables and means of modeling them.”, Manuscripta geodaetica, 18: 280-289.
Brunner, F. K., and Gu, M., 1991, “An improved model for the dual frequency ionospheric correction of GPS observations.” Manuscripta geodaetica, 16(3): 205-214.
Budden, K. G., 1988, The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere, Cambridge: Cambridge University Press.
Cander, L. R., 2008, “Ionospheric research and space weather services.”, Journal of atmospheric and solar-terrestrial physics, 70(15): 1870-1878.
Chapman, S., 1931, “The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth.”, Proceedings of the Physical Society, 43(1): 26.
Datta‐Barua, S., Walter, T., Blanch, J., and Enge, P.. 2008, “Bounding higher‐order ionosphere errors for the dual‐frequency GPS user.”, Radio Science, 43: RS5010.
Davies, K., 1990, Ionospheric radio, London: Peter Peregrinus Ltd.
El-Rabbany, A., 2002, Introduction to GPS: the global positioning system, U.S.: Artech House.
Elmas, Z. G., Aquino, M., Marques, H. A., and Monico, J. F., 2011, “Higher order ionospheric effects in GNSS positioning in the European region.”, Annales Geophysicae, 29(8): 1383-1399.
Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M., and Steigenberger, P., 2005, “Impact of higher‐order ionospheric terms on GPS estimates.”, Geophysical Research Letters, 32: L23311.
Héroux, P., and Kouba, J., 2001, “GPS precise point positioning using IGS orbit products.”, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6): 573-578.
Hartmann, G., and Leitinger, R., 1984, “Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz.”. Bulletin géodésique, 58(2): 109-136.
Hathaway, D. H., 2015a, “The solar cycle.”, Living Reviews in Solar Physics, 12(1): 1-87.
Hocke, K., 2008, “Oscillations of global mean TEC.”, Journal of Geophysical Research: Space Physics (1978–2012), 113: A04302.
Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2007, GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more, Germany: Springer Science and Business Media.
Hoque, M. M., and Jakowski, N., 2008, “Estimate of higher order ionospheric errors in GNSS positioning.”, Radio Science, 43(5): RS5008.
Kalita, J. Z., Rzepecka, Z., and Szuman-Kalita, I., 2014, “The application of Precise Point Positioning in Geosciences.”, Paper presented at the Proc. of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, May 22-23.
Kedar, S., Hajj, G. A., Wilson, B. D., and Heflin, M. B., 2003, “The effect of the second order GPS ionospheric correction on receiver positions.”, Geophysical Research Letters, 30(16): SDE.
Kivelson, M. G., and Russell, C. T., 1995, Introduction to space physics, U.S.: Cambridge university press.
Klobuchar, J., 1996, “Ionospheric effects on GPS.”, Global Positioning System: Theory and applications., 1: 485-515.
Langley, R. B., 1998, “Propagation of the GPS Signals” pp. 111-149 in GPS for Geodesy, edited by Kleusberg, A., and Teunissen, P. J. G., eds., Germany: Springer.
Liang, M. C., Li, K. F., Shia, R. L., and Yung, Y. L., 2008, “Short‐period solar cycle signals in the ionosphere observed by FORMOSAT‐3/COSMIC.”, Geophysical Research Letters, 35(15): L15818.
Lin, C.-H., Liu, C., Liu, J., Chen, C., Burns, A., and Wang, W., 2010, “Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC.”, Journal of Geophysical Research, 115: A03308.
Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M. L., and He, M., 2009, “Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements.”, Journal of Geophysical Research, 114: A02302.
Marques, H., Monico, J., and Aquino, M., 2011, “RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files.”, GPS solutions, 15(3): 305-314.
McNamara, L. F., 1991, The ionosphere: communications, surveillance, and direction finding: Florida: Krieger publishing company.
Mendillo, M., Huang, C.-L., Pi, X., Rishbeth, H., and Meier, R., 2005, “The global ionospheric asymmetry in total electron content.”, Journal of atmospheric and solar-terrestrial physics, 67(15): 1377-1387.
Min, K., Park, J., Kim, H., Kim, V., Kil, H., Lee, J.,Rentz, S., Lühr, H., and Paxton, L., 2009, “The 27‐day modulation of the low‐latitude ionosphere during a solar maximum.”, Journal of Geophysical Research: Space Physics, 114: A04317.
Odijk, D., 2002, Fast precise GPS positioning in the presence of ionospheric delays, Doctoral dissertation, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft.
Øvstedal, O., Kjørsvik, N., and Gjevestad, J., 2006, “Surveying using GPS precise point positioning.”, Paper presented at the XXII International FIG Congress, Munich, Germany, October 8-13.
Petrie, E. J., Hernández-Pajares, M., Spalla, P., Moore, P., and King, M. A., 2011, “A review of higher order ionospheric refraction effects on dual frequency GPS.”, Surveys in Geophysics, 32(3): 197-253.
Sanz, J., Juan, J., and Hernández-Pajares, M., 2010, GNSS Data Processing: Fundamentals and Algorithms (Vol-I), and Laboratory Exercises (Vol-II), The Netherlands: ESA Communications.
Schunk, R., and Nagy, A, 2009, Ionospheres: physics, plasma physics, and chemistry: New York: Cambridge university press.
Wanninger, L., 1994, Der Einfluß der Ionosphäre auf die Positionierung mit GPS, Doctoral dissertation, Department of Surveying, University of Hannover, Germany.

三、網頁參考文獻
森泰儀器公司,2015,雙星eGPS差分訊號雲端服務網(Civil-NET)。http://60.249.51.150:8080/geopp_gnweb/gnweb.html,取用日期:2015年11月27日。
Geoscience Australia., 2016, AUPOS - Online GPS Processing Service. Retrieved May 20, 2016, from Geoscience Australia on the World Wide Web: http://www.ga.gov.au/bin/gps.pl
Hathaway, D., 2015b, The Sunspot Cycle. Retrieved November 22, 2015, from Hathaway, D. on the World Wide Web: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
Silver. M., 2013, A Comparison of Free GPS Online Post-Processing Services. Retrived May 20, 2016 from GPS World on the World Wide Web: http://gpsworld.com/a-comparison-of-free-gps-online-post-processing-services/
Rovira Garcia. A., 2010, Design, implementation and testing of GPS data processing modules for GNSS navigation. Retrived March 7, 2016 from UPC. on the World Wide Web: http://upcommons.upc.edu/bitstream/handle/2099.1/8985/1%20PFC%20%20Memory.pdf
描述 碩士
國立政治大學
地政學系
103257029
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103257029
資料類型 thesis
dc.contributor.advisor 林老生zh_TW
dc.contributor.advisor Lin, Lao Shengen_US
dc.contributor.author (作者) 洪婉綺zh_TW
dc.contributor.author (作者) Hung, Wan Chien_US
dc.creator (作者) 洪婉綺zh_TW
dc.creator (作者) Hung, Wan Chien_US
dc.date (日期) 2016en_US
dc.date.accessioned 2-九月-2016 00:51:53 (UTC+8)-
dc.date.available 2-九月-2016 00:51:53 (UTC+8)-
dc.date.issued (上傳時間) 2-九月-2016 00:51:53 (UTC+8)-
dc.identifier (其他 識別碼) G0103257029en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/101172-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 103257029zh_TW
dc.description.abstract (摘要)   全球定位系統(Global Positioning System,GPS)雙頻觀測資料經過處理後,其精密單點定位(Precise Point Positioning,PPP)之精度可達公分等級。然而,對於精度要求較高之應用,如控制測量、地殼變形監測等,公分級精度尚嫌不足。欲進一步提昇PPP之精度,必須考慮電離層第二、三階等高階項誤差之改正。本研究欲探討電離層高階項誤差對於台灣地區PPP之影響,因此本研究之目的為探討(1)不同方向誤差(2)太陽黑子高、低峰期(3)不同季節(4)不同地區,改正電離層高階項誤差前、後之精度效益。

  實驗使用之主要軟體與服務有:(1)RINEX_HO,由巴西São Paulo State University所開發,用以估計電離層高階項誤差,並產製改正電離層高階項誤差後之GPS RINEX觀測檔。(2)gLAB(global navigation satellite system –LABoratory),由gAGE(Research group of Astronomy and GEomatics Technical University of Catalonia in Spain)所開發,可進行PPP及誤差計算。(3)AUPOS,由Geoscience Australia所提供之免費線上GPS資料處理服務,可解算地表上任意位置坐標。實驗資料選擇台灣森泰儀器公司雙星eGPS差分訊號雲端服務網(Civil-NET)中四個觀測站2014年之觀測資料,以及五個台灣衛星追蹤站2009年至2015年之觀測資料,和精密星曆等其他資料。根據實驗結果發現,改正電離層高階項誤差,對於PPP之影響有幾點特性:(1)南北方向定位精度之影響量最大,改正前後差異最大達6.8mm。(2)太陽黑子低峰期觀測資料改正效果較佳,改正精度提昇比例為43%。(3)夏季觀測資料精度提昇效果最佳,提昇比例約為40%。(4)精度提昇效果最佳之測站為墾丁KDNM衛星追蹤站,定位精度提昇之比例約為48%。定位精度提昇效果最佳之時段為太陽黑子低峰時期之夏季,而提昇效果較佳之地區為南部觀測站。同時符合這些條件之觀測資料,在改正電離層高階項誤差後,精度提昇比例可達九成。
zh_TW
dc.description.abstract (摘要)   The precise point positioning (PPP) accuracy can reach centimeter level using global positioning system (GPS) dual-frequency data. However, centimeter level accuracy is insufficient for high accuracy applications, such as control surveying, deformation monitoring, etc. To improve the accuracy of PPP, higher order ionospheric refraction effects must be taken into account. To investigate the effects on PPP accuracies in Taiwan caused by higher order ionospheric refraction errors, the purposes of this research are to evaluate the accuracy of PPP after higher order ionospheric refraction errors are corrected (1)of errors in different directions (2)using observation data in low or higher solar activity period (3)using observation data of different seasons (4) using observation data of different areas.

  There are two programs and one service applied in this paper: RINEX_HO, gLAB (global navigation satellite system-LABoratory) and AUPOS. (1)RINEX_HO, developed by São Paulo State University in Brazil, can estimate higher order ionospheric refraction terms and produce a corresponding corrected GPS observation file. (2)gLAB, developed by gAGE (Research group of Astronomy and GEomatics Technical University of Catalonia in Spain), can perform precise point positioning and calculate position errors. (3)AUPOS, provided by Geoscience Australia, can produce coordinates of observation stations. Experiment data sets are the observation data from 4 stations of Civil-NET of year 2014 and from 5 satellite tracking stations of Taiwan region of year 2009 to 2015, precise ephemeris and other data of international global navigation satellite system service (IGS). According to the experiment results, there are several characteristics after correcting higher order ionospheric refraction errors: (1)The most significant effects on the receiver positions occur in the north-south direction, and the largest difference between uncorrected and corrected PPP results is 6.8 mm. (2)The accuracies of corrected PPP results improve when the solar activity is low. About 43% PPP results in low solar activity improve after corrected. (3)Summer observation data have better outcome after higher order ionospheric refraction errors. About 40% of PPP results improve after corrected. (4)The observation data of KDNM station can get better PPP results after corrected. About 48% of PPP results improve after corrected. The best situation of correcting higher order ionospheric refraction errors is the observation data of southern stations in summer when the solar activity is low. Under these conditions, 90% of observation data PPP accuracy improved after correcting higher order ionospheric refraction errors.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究動機與目的 1
第二節 論文架構 5
第二章 文獻回顧 7
第一節 全球定位系統與定位模式 7
一、 全球定位系統 7
二、 定位模式 11
三、 精密單點定位之應用 13
第二節 電離層 14
一、 電離層特性及變化 14
二、 電離層模型 20
三、 電離層誤差 21
四、 電離層高階項誤差I2和I3之大小 23
第三章 研究方法與理論基礎 25
第一節 電離層高階項誤差估計 26
一、 電離層第一階項誤差 26
二、 電離層第二階項誤差 26
三、 電離層第三階項誤差 27
四、 各項參數計算 27
第二節 精密單點定位 31
一、 觀測方程式 31
二、 誤差改正 31
三、 無電離層線性組合 32
四、 線性化觀測模型 33
第三節 實驗軟體 35
一、 RINEX_HO程式 35
二、 gLAB程式 36
三、 AUPOS線上GPS處理服務 38
第四節 實驗資料 41
一、 Civil-NET觀測站資料 41
二、 台灣衛星追蹤站觀測資料 43
第五節 實驗方法 45
第四章 實驗成果與分析 47
第一節 實驗成果介紹 47
第二節 短期觀測資料定位結果 50
一、 春季觀測資料定位結果 50
二、 夏季觀測資料定位結果 54
三、 秋季觀測資料定位結果 57
四、 冬季觀測資料定位結果 59
五、 Civil-NET各觀測站定位結果綜合分析 61
第三節 長期觀測資料定位結果 64
一、 太陽黑子低峰時期 64
二、 太陽黑子高峰時期 71
三、 台灣衛星追蹤站定位結果綜合分析 74
第四節 單日觀測資料定位結果 77
一、 墾丁KDNM衛星追蹤站定位誤差單日變化 78
二、 陽明山YMSM衛星追蹤站定位誤差單日變化 80
三、 定位誤差單日變化綜合分析 81
第五節 綜合討論 82
第五章 結論與建議 87
參考文獻 91
附錄:台灣衛星追蹤站各年各季節改正前後平均定位誤差絕對值之差 99
zh_TW
dc.format.extent 5389718 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103257029en_US
dc.subject (關鍵詞) 全球定位系統zh_TW
dc.subject (關鍵詞) 精密單點定位zh_TW
dc.subject (關鍵詞) 電離層高階項誤差zh_TW
dc.subject (關鍵詞) 雙頻zh_TW
dc.subject (關鍵詞) Global Positioning System (GPS)en_US
dc.subject (關鍵詞) Precise Point Positioning (PPP)en_US
dc.subject (關鍵詞) Higher Order Ionospheric Refraction Effectsen_US
dc.subject (關鍵詞) Dual Frequencyen_US
dc.title (題名) 消除電離層高階項誤差以提昇GPS精密單點定位精度之研究zh_TW
dc.title (題名) Improving the Accuracy of GPS Precise Point Positioning by Eliminating the Higher Order Ionospheric Refraction Effectsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文參考文獻
田英國、郝金明、謝建濤、張力洋、薄軍偉,2014,「開源精密單點定位軟體 gLAB 定位精度分析」,『全球定位系統』,39(1):34-36。
朱春春、李征航、屈小川、申小平,2015,「高階電離層延遲對 GPS 雙差觀測值和基線向量的影響」,『大地測量與地球動力學』,35(1):81-86。
李征航,2002,「全球定位系統(GPS)技術的最新進展,第一講:多功能衛星導航定位服務系統」,『測繪資訊與工程』,27(1):19-22。
李征航、吳秀娟,2002a,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(上)」,『測繪資訊與工程』,27(5):34-36。
李征航、吳秀娟,2002b,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(下)」,『測繪資訊與工程』,27(6):31-35。
李軍、高詠梅,2010,「GAMIT, GIPSY 和 BERNESE 软件解算结果的比较研究」,『全球定位系统』,35(3):5-9。
邱冠維,2009,「利用精密單點定位進行GPS浮標近即時精密定位」,國立成功大學測量及空間資訊研究所碩士論文:台南。
林老生,2009,「GPS精密單點定位在地籍測量之應用」,『台灣土地研究』,12(2):1-25。
黃勁松、李征航,2005,『GPS測量與數據處理』,武漢:武漢大學出版社。
黃俊穎,2009,「運用臺灣自主電離層數值模式研究電離層赤道異常現象」,國立中央大學太空科學研究所碩士論文:桃園。
張小紅、劉經南,2006,「基於精密單點定位技術的航空測量應用實踐」,『武漢大學學報資訊科學版』,31(1):19-22。
張明、王莎,2012,「基於PPP技術的震後臺站位移監測與分析」,『測繪資訊與工程』,37(1):2-14。
葉世榕、張雙成、劉經南,2008,「精密單點定位方法估計對流層延遲精度分析」,『武漢大學學報資訊科學版』,33(8):788-791。
詹長根、彭琳、胡凱,2005,「精密單點定位技術在地籍測繪中應用的展望」,『測繪資訊與工程』,30(2):40-41。

二、外文參考文獻
Bassiri, S., and Hajj, G. A., 1993, “Higher-order ionospheric effects on the global positioning system observables and means of modeling them.”, Manuscripta geodaetica, 18: 280-289.
Brunner, F. K., and Gu, M., 1991, “An improved model for the dual frequency ionospheric correction of GPS observations.” Manuscripta geodaetica, 16(3): 205-214.
Budden, K. G., 1988, The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere, Cambridge: Cambridge University Press.
Cander, L. R., 2008, “Ionospheric research and space weather services.”, Journal of atmospheric and solar-terrestrial physics, 70(15): 1870-1878.
Chapman, S., 1931, “The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth.”, Proceedings of the Physical Society, 43(1): 26.
Datta‐Barua, S., Walter, T., Blanch, J., and Enge, P.. 2008, “Bounding higher‐order ionosphere errors for the dual‐frequency GPS user.”, Radio Science, 43: RS5010.
Davies, K., 1990, Ionospheric radio, London: Peter Peregrinus Ltd.
El-Rabbany, A., 2002, Introduction to GPS: the global positioning system, U.S.: Artech House.
Elmas, Z. G., Aquino, M., Marques, H. A., and Monico, J. F., 2011, “Higher order ionospheric effects in GNSS positioning in the European region.”, Annales Geophysicae, 29(8): 1383-1399.
Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M., and Steigenberger, P., 2005, “Impact of higher‐order ionospheric terms on GPS estimates.”, Geophysical Research Letters, 32: L23311.
Héroux, P., and Kouba, J., 2001, “GPS precise point positioning using IGS orbit products.”, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6): 573-578.
Hartmann, G., and Leitinger, R., 1984, “Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz.”. Bulletin géodésique, 58(2): 109-136.
Hathaway, D. H., 2015a, “The solar cycle.”, Living Reviews in Solar Physics, 12(1): 1-87.
Hocke, K., 2008, “Oscillations of global mean TEC.”, Journal of Geophysical Research: Space Physics (1978–2012), 113: A04302.
Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2007, GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more, Germany: Springer Science and Business Media.
Hoque, M. M., and Jakowski, N., 2008, “Estimate of higher order ionospheric errors in GNSS positioning.”, Radio Science, 43(5): RS5008.
Kalita, J. Z., Rzepecka, Z., and Szuman-Kalita, I., 2014, “The application of Precise Point Positioning in Geosciences.”, Paper presented at the Proc. of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, May 22-23.
Kedar, S., Hajj, G. A., Wilson, B. D., and Heflin, M. B., 2003, “The effect of the second order GPS ionospheric correction on receiver positions.”, Geophysical Research Letters, 30(16): SDE.
Kivelson, M. G., and Russell, C. T., 1995, Introduction to space physics, U.S.: Cambridge university press.
Klobuchar, J., 1996, “Ionospheric effects on GPS.”, Global Positioning System: Theory and applications., 1: 485-515.
Langley, R. B., 1998, “Propagation of the GPS Signals” pp. 111-149 in GPS for Geodesy, edited by Kleusberg, A., and Teunissen, P. J. G., eds., Germany: Springer.
Liang, M. C., Li, K. F., Shia, R. L., and Yung, Y. L., 2008, “Short‐period solar cycle signals in the ionosphere observed by FORMOSAT‐3/COSMIC.”, Geophysical Research Letters, 35(15): L15818.
Lin, C.-H., Liu, C., Liu, J., Chen, C., Burns, A., and Wang, W., 2010, “Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC.”, Journal of Geophysical Research, 115: A03308.
Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M. L., and He, M., 2009, “Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements.”, Journal of Geophysical Research, 114: A02302.
Marques, H., Monico, J., and Aquino, M., 2011, “RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files.”, GPS solutions, 15(3): 305-314.
McNamara, L. F., 1991, The ionosphere: communications, surveillance, and direction finding: Florida: Krieger publishing company.
Mendillo, M., Huang, C.-L., Pi, X., Rishbeth, H., and Meier, R., 2005, “The global ionospheric asymmetry in total electron content.”, Journal of atmospheric and solar-terrestrial physics, 67(15): 1377-1387.
Min, K., Park, J., Kim, H., Kim, V., Kil, H., Lee, J.,Rentz, S., Lühr, H., and Paxton, L., 2009, “The 27‐day modulation of the low‐latitude ionosphere during a solar maximum.”, Journal of Geophysical Research: Space Physics, 114: A04317.
Odijk, D., 2002, Fast precise GPS positioning in the presence of ionospheric delays, Doctoral dissertation, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft.
Øvstedal, O., Kjørsvik, N., and Gjevestad, J., 2006, “Surveying using GPS precise point positioning.”, Paper presented at the XXII International FIG Congress, Munich, Germany, October 8-13.
Petrie, E. J., Hernández-Pajares, M., Spalla, P., Moore, P., and King, M. A., 2011, “A review of higher order ionospheric refraction effects on dual frequency GPS.”, Surveys in Geophysics, 32(3): 197-253.
Sanz, J., Juan, J., and Hernández-Pajares, M., 2010, GNSS Data Processing: Fundamentals and Algorithms (Vol-I), and Laboratory Exercises (Vol-II), The Netherlands: ESA Communications.
Schunk, R., and Nagy, A, 2009, Ionospheres: physics, plasma physics, and chemistry: New York: Cambridge university press.
Wanninger, L., 1994, Der Einfluß der Ionosphäre auf die Positionierung mit GPS, Doctoral dissertation, Department of Surveying, University of Hannover, Germany.

三、網頁參考文獻
森泰儀器公司,2015,雙星eGPS差分訊號雲端服務網(Civil-NET)。http://60.249.51.150:8080/geopp_gnweb/gnweb.html,取用日期:2015年11月27日。
Geoscience Australia., 2016, AUPOS - Online GPS Processing Service. Retrieved May 20, 2016, from Geoscience Australia on the World Wide Web: http://www.ga.gov.au/bin/gps.pl
Hathaway, D., 2015b, The Sunspot Cycle. Retrieved November 22, 2015, from Hathaway, D. on the World Wide Web: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
Silver. M., 2013, A Comparison of Free GPS Online Post-Processing Services. Retrived May 20, 2016 from GPS World on the World Wide Web: http://gpsworld.com/a-comparison-of-free-gps-online-post-processing-services/
Rovira Garcia. A., 2010, Design, implementation and testing of GPS data processing modules for GNSS navigation. Retrived March 7, 2016 from UPC. on the World Wide Web: http://upcommons.upc.edu/bitstream/handle/2099.1/8985/1%20PFC%20%20Memory.pdf
zh_TW