學術產出-學位論文
題名 | 利用擴散磁共振影像分析棒球運動員的神經連結特性 Using diffusion tensor imaging to access brain connectivity of baseball players |
作者 | 黃笠哲 Huang, Li Che |
貢獻者 | 蔡尚岳 Tsai, Shang Yueh 黃笠哲 Huang, Li Che |
關鍵詞 | 擴散張量磁振造影 灰質 白質 神經纖維追蹤術 |
日期 | 2016 |
上傳時間 | 14-十一月-2016 16:15:27 (UTC+8) |
摘要 | 從1980年代被提出的擴散磁振造影理論(Diffusion MRI theory)至1994年推導出的擴散張量磁振造影(diffusion tensor imaging)的理論,擴散磁振造影在現今已具有高重現性,擴散磁振造影由一開始的結構影像進階到具有向量資訊的腦神經影像,不難見得在非侵入式的醫學診斷儀器發展得相當蓬勃,此項技術應用於判斷血性腦中風,可以準確評估腦部、肝臟腫瘤的治療效果。擴散張量影像技術,它主要應用在神經疾病的研究。更進一步的使用神經纖維成像技術來檢測神經網路。神經纖維成像技術,在追蹤神經網路的做法可以分為確定型神經徑路追蹤演算法(deterministic tractography methods),機率型神經徑路追蹤演算法(probabilistic tractography methods)。在過去的研究中,所使用的確定型追蹤法已有一定的發展在於白質區域的神經追蹤,但是比較困難去描述神經在擴散方向不明確的灰質區域。我們所使用的機率型神經徑路追蹤演算法,追蹤腦迴區域間的神經纖維。透過區分不同的大腦皮質區域,並計算各個腦迴區域之間的神經連結。我們的研究運動為棒球,並將其分成三組,Skilled group(S組):大專盃甲組(公開組)選手,包含擁有棒球專項體育保送生、體育資優生;Intermediate group(I組):大專盃乙組(一般組)選手,或是擁有類似層級的比賽經驗,如:系際盃、社會棒球聯賽等;Control group(C組):無棒球運動經驗者(普通體育課除外)。三組各15名受試者,共45人。我們以灰質腦區的連結機率、區域非等向性(Fractional anisotropy)和平均擴散(mean diffusivity)數據來判斷,FA的數值為0~1之間,數值越大越表此部分水分子越以單一方向擴散,臨床上可能代表神經纖維密度(fiber density)或髓鞘化(myelination)的程度。我們在灰質部分發現Paracentral Lobule、Precentral這些腦區在S組與C組受試者有顯著差異,並且也具有較大的連結機率,在白質發現Posterior corona radiata、Superior longitudinal fasciculus中S組與C組同樣有著顯著差異。本研究以棒球運動員為對象,探討長期訓練下對與腦部連結性的改變,初步結果已發現白質組織擴散影像的連結特性會因為訓練而造成群組間的差異,同時以會在灰質間的連結性找到群組間的差異,此部分結果未來可進一步與其他結構資訊(皮質厚度、體積)做比較。 |
參考文獻 | [1] Richard W., Conor L. , Sumit N., and Aziz MU, "Fiber Tracking Using Magnetic Resonance Diffusion Tensor Imaging and Its Applications to Human Brain Development ".Mental Retardation and Developmental Disabilities, Vol 9 , pp: 168-177, 2003. [2] Basser, P.J., Mattiello, J., Turner, R., and Le Bihan, D., Diffusion tensor echo-planar imaging of human brain. in Proceedings of the SMRM, 1993: p.584. [3] Basser, P.J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994. 103(3): p.247-254. [4] Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., and Chabriat, H., Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001. 13(4): p. 534-546. [5] Mori, S. and Barker, P.B., Diffusion magnetic resonance imaging: its principle and applications. Anat Rec, 1999. 257(3): p. 102-109. [6] Mori, S., Crain, B.J., Chacko, V.P., and van Zijl, P.C., Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 1999. 45(2): p. 265-269. [7] Jiang, H., van Zijl, P.C., Kim, J., Pearlson, G.D., and Mori, S., DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed, 2006. 81(2): p. 106-116. [8] Mori, S. and van Zijl, P.C., Fiber tracking: principles and strategies - a technical review. NMR Biomed, 2002. 15(7-8): p. 468-480. [9] Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M.,Wheeler-Kingshott, C.A., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K.,Ciccarelli, O., Thompson, A.J., Brady, J.M., and Matthews, P.M., Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 2003. 6(7): p. 750-757. [10] Parker, G.J., Haroon, H.A., and Wheeler-Kingshott, C.A., A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging, 2003. 18(2): p. 242-254. [11] Jürgen Hänggi, Susan Koeneke, Ladina Bezzola, and Lutz Jäncke. Structural Neuroplasticity in the Sensorimotor Network of Professional Female Ballet Dancers. Human Brain Mapping, 2009. 31(8): 1196-206 [12] Lutz Jäncke, Susan Koeneke, Ariana Hoppe, Christina Rominger, Jü rgen Hänggi. The Architecture of the Golfer’s Brain. PLoS One. 2009,4(3):e4785. |
描述 | 碩士 國立政治大學 應用物理研究所 103755011 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#G0103755011 |
資料類型 | thesis |
dc.contributor.advisor | 蔡尚岳 | zh_TW |
dc.contributor.advisor | Tsai, Shang Yueh | en_US |
dc.contributor.author (作者) | 黃笠哲 | zh_TW |
dc.contributor.author (作者) | Huang, Li Che | en_US |
dc.creator (作者) | 黃笠哲 | zh_TW |
dc.creator (作者) | Huang, Li Che | en_US |
dc.date (日期) | 2016 | en_US |
dc.date.accessioned | 14-十一月-2016 16:15:27 (UTC+8) | - |
dc.date.available | 14-十一月-2016 16:15:27 (UTC+8) | - |
dc.date.issued (上傳時間) | 14-十一月-2016 16:15:27 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0103755011 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/103993 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用物理研究所 | zh_TW |
dc.description (描述) | 103755011 | zh_TW |
dc.description.abstract (摘要) | 從1980年代被提出的擴散磁振造影理論(Diffusion MRI theory)至1994年推導出的擴散張量磁振造影(diffusion tensor imaging)的理論,擴散磁振造影在現今已具有高重現性,擴散磁振造影由一開始的結構影像進階到具有向量資訊的腦神經影像,不難見得在非侵入式的醫學診斷儀器發展得相當蓬勃,此項技術應用於判斷血性腦中風,可以準確評估腦部、肝臟腫瘤的治療效果。擴散張量影像技術,它主要應用在神經疾病的研究。更進一步的使用神經纖維成像技術來檢測神經網路。神經纖維成像技術,在追蹤神經網路的做法可以分為確定型神經徑路追蹤演算法(deterministic tractography methods),機率型神經徑路追蹤演算法(probabilistic tractography methods)。在過去的研究中,所使用的確定型追蹤法已有一定的發展在於白質區域的神經追蹤,但是比較困難去描述神經在擴散方向不明確的灰質區域。我們所使用的機率型神經徑路追蹤演算法,追蹤腦迴區域間的神經纖維。透過區分不同的大腦皮質區域,並計算各個腦迴區域之間的神經連結。我們的研究運動為棒球,並將其分成三組,Skilled group(S組):大專盃甲組(公開組)選手,包含擁有棒球專項體育保送生、體育資優生;Intermediate group(I組):大專盃乙組(一般組)選手,或是擁有類似層級的比賽經驗,如:系際盃、社會棒球聯賽等;Control group(C組):無棒球運動經驗者(普通體育課除外)。三組各15名受試者,共45人。我們以灰質腦區的連結機率、區域非等向性(Fractional anisotropy)和平均擴散(mean diffusivity)數據來判斷,FA的數值為0~1之間,數值越大越表此部分水分子越以單一方向擴散,臨床上可能代表神經纖維密度(fiber density)或髓鞘化(myelination)的程度。我們在灰質部分發現Paracentral Lobule、Precentral這些腦區在S組與C組受試者有顯著差異,並且也具有較大的連結機率,在白質發現Posterior corona radiata、Superior longitudinal fasciculus中S組與C組同樣有著顯著差異。本研究以棒球運動員為對象,探討長期訓練下對與腦部連結性的改變,初步結果已發現白質組織擴散影像的連結特性會因為訓練而造成群組間的差異,同時以會在灰質間的連結性找到群組間的差異,此部分結果未來可進一步與其他結構資訊(皮質厚度、體積)做比較。 | zh_TW |
dc.description.tableofcontents | 中文摘要 i Abstract ii 第一章 介紹 1 1-1擴散張量影像(Diffusion tensor image,DTI) 1 1-2非等向性指標(fractional anisotropy, FA) 3 1-3平均擴散(mean diffusivity, MD) 4 1-4神經追蹤術 4 1-5文獻回顧 7 1-6研究動機 9 第二章 方法 10 2-1受試者及資料擷取 10 2-2 擴散張量影像處理 10 2-3 擴散參數及連結分析 12 2-4 統計分析 15 第三章 結果 17 3-1 非等向性指標(FA) 17 3-2 平均擴散(MD) 20 3-3灰質腦區連結 23 第四章 討論與結論 29 參考資料 34 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0103755011 | en_US |
dc.subject (關鍵詞) | 擴散張量磁振造影 | zh_TW |
dc.subject (關鍵詞) | 灰質 | zh_TW |
dc.subject (關鍵詞) | 白質 | zh_TW |
dc.subject (關鍵詞) | 神經纖維追蹤術 | zh_TW |
dc.title (題名) | 利用擴散磁共振影像分析棒球運動員的神經連結特性 | zh_TW |
dc.title (題名) | Using diffusion tensor imaging to access brain connectivity of baseball players | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | [1] Richard W., Conor L. , Sumit N., and Aziz MU, "Fiber Tracking Using Magnetic Resonance Diffusion Tensor Imaging and Its Applications to Human Brain Development ".Mental Retardation and Developmental Disabilities, Vol 9 , pp: 168-177, 2003. [2] Basser, P.J., Mattiello, J., Turner, R., and Le Bihan, D., Diffusion tensor echo-planar imaging of human brain. in Proceedings of the SMRM, 1993: p.584. [3] Basser, P.J., Mattiello, J., and LeBihan, D., Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994. 103(3): p.247-254. [4] Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., and Chabriat, H., Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001. 13(4): p. 534-546. [5] Mori, S. and Barker, P.B., Diffusion magnetic resonance imaging: its principle and applications. Anat Rec, 1999. 257(3): p. 102-109. [6] Mori, S., Crain, B.J., Chacko, V.P., and van Zijl, P.C., Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 1999. 45(2): p. 265-269. [7] Jiang, H., van Zijl, P.C., Kim, J., Pearlson, G.D., and Mori, S., DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed, 2006. 81(2): p. 106-116. [8] Mori, S. and van Zijl, P.C., Fiber tracking: principles and strategies - a technical review. NMR Biomed, 2002. 15(7-8): p. 468-480. [9] Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M.,Wheeler-Kingshott, C.A., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K.,Ciccarelli, O., Thompson, A.J., Brady, J.M., and Matthews, P.M., Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 2003. 6(7): p. 750-757. [10] Parker, G.J., Haroon, H.A., and Wheeler-Kingshott, C.A., A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging, 2003. 18(2): p. 242-254. [11] Jürgen Hänggi, Susan Koeneke, Ladina Bezzola, and Lutz Jäncke. Structural Neuroplasticity in the Sensorimotor Network of Professional Female Ballet Dancers. Human Brain Mapping, 2009. 31(8): 1196-206 [12] Lutz Jäncke, Susan Koeneke, Ariana Hoppe, Christina Rominger, Jü rgen Hänggi. The Architecture of the Golfer’s Brain. PLoS One. 2009,4(3):e4785. | zh_TW |