學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 一個具擴散性的SIR模型之行進波解
Traveling wave solutions for a diffusive SIR model
作者 余陳宗
Yu, Chen Tzung
貢獻者 符聖珍
Fu, Sheng Chen
余陳宗
Yu, Chen Tzung
關鍵詞 行進波解
擴散性
SIR model
traveling wave solution
日期 2016
上傳時間 7-十二月-2016 10:46:54 (UTC+8)
摘要 本篇論文討論的是SIR模型的反應擴散方程
         s_t = d_1 s_xx − βsi/(s + i),
         i_t = d_2 i_xx + βsi/(s + i) − γi,
         r_t = d_3 r_xx + γi,
之行進波的存在性,其中模型描述的是在一個封閉區域裡流行疾病爆發的狀態。這裡的 β 是傳播係數,γ 是治癒或移除(即死亡)速率,s 是未被傳染個體數,i 是傳染源個體數,d_1、d_2、d_3分別為其擴散之係數。
  我們將使用Schauder不動點定理(Schauder fixed point theorem)、Arzela-Ascoli定理和最大值原理(maximum principle)來證明:該系統存在最小速度為c=c*:=2√(d2( β - γ ))之行進波解。我們的結果回答了[11]裡所提出的開放式問題。
 In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model
         s_t = d_1 s_xx − βsi/(s + i),
         i_t = d_2 i_xx + βsi/(s + i) − γi,
         r_t = d_3 r_xx + γi,
which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11].
參考文獻 [1]  Shangbing Ai and Wenzhang Huang. Travelling waves for a reaction–diffusion system in population dynamics and epidemiology. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135(4):663–675, 07 2007.

[2]  Steven R. Dunbar. Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol., 17(1):11–32, 1983.

[3]  Steven R. Dunbar. Traveling wave solutions of diffusive Lotka-Volterra equations: a het-eroclinic connection in R4. Trans. Amer. Math. Soc., 286(2):557–594, 1984.

[4]  Sheng-Chen Fu. The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction. Quart. Appl. Math., 72(4):649??64, 2014.

[5]  Sheng-Chen Fu. Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl., 435(1):20–37, 2016.

[6]  Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Math-ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e: 34002)], With a foreword by Peter Bates.

[7]  Yuzo Hosono and Bilal Ilyas. Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlinear World, 1(3):277–290, 1994.

[8]  Yuzo Hosono and Bilal Ilyas. Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci., 5(7):935–966, 1995.

[9]  Wenzhang Huang. Traveling waves for a biological reaction-diffusion model. J. Dynam. Differential Equations, 16(3):745–765, 2004.

[10] Anders Källén. Thresholds and travelling waves in an epidemic model for rabies. Nonlin-ear Anal., 8(8):851–856, 1984.

[11] Xiang-Sheng Wang, Haiyan Wang, and Jianhong Wu. Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst., 32(9): 3303–3324, 2012.
描述 碩士
國立政治大學
應用數學系
102751007
資料來源 http://thesis.lib.nccu.edu.tw/record/#G1027510071
資料類型 thesis
dc.contributor.advisor 符聖珍zh_TW
dc.contributor.advisor Fu, Sheng Chenen_US
dc.contributor.author (作者) 余陳宗zh_TW
dc.contributor.author (作者) Yu, Chen Tzungen_US
dc.creator (作者) 余陳宗zh_TW
dc.creator (作者) Yu, Chen Tzungen_US
dc.date (日期) 2016en_US
dc.date.accessioned 7-十二月-2016 10:46:54 (UTC+8)-
dc.date.available 7-十二月-2016 10:46:54 (UTC+8)-
dc.date.issued (上傳時間) 7-十二月-2016 10:46:54 (UTC+8)-
dc.identifier (其他 識別碼) G1027510071en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/104628-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 102751007zh_TW
dc.description.abstract (摘要) 本篇論文討論的是SIR模型的反應擴散方程
         s_t = d_1 s_xx − βsi/(s + i),
         i_t = d_2 i_xx + βsi/(s + i) − γi,
         r_t = d_3 r_xx + γi,
之行進波的存在性,其中模型描述的是在一個封閉區域裡流行疾病爆發的狀態。這裡的 β 是傳播係數,γ 是治癒或移除(即死亡)速率,s 是未被傳染個體數,i 是傳染源個體數,d_1、d_2、d_3分別為其擴散之係數。
  我們將使用Schauder不動點定理(Schauder fixed point theorem)、Arzela-Ascoli定理和最大值原理(maximum principle)來證明:該系統存在最小速度為c=c*:=2√(d2( β - γ ))之行進波解。我們的結果回答了[11]裡所提出的開放式問題。
zh_TW
dc.description.abstract (摘要)  In this thesis, we study the existence of traveling waves of a reaction-diffusion equation for a diffusive epidemic SIR model
         s_t = d_1 s_xx − βsi/(s + i),
         i_t = d_2 i_xx + βsi/(s + i) − γi,
         r_t = d_3 r_xx + γi,
which describes an infectious disease outbreak in a closed population. Here β is the transmission coefficient, γ is the recovery or remove rate, and s, i, and r rep-resent numbers of susceptible individuals, infected individuals, and removed individuals, respectively, and d_1, d_2, and d_3 are their diffusion rates. We use the Schauder fixed point theorem, the Arzela-Ascoli theorem, and the maximum principle to show that this system has a traveling wave solution with minimum speed c=c*:=2√(d2( β - γ )). Our result answers an open problem proposed in [11].
en_US
dc.description.tableofcontents 致謝                         i
中文摘要                       ii
Abstract.                       iii
Contents.                       iv
1 Introduction.                     1
2 Preliminary.                     4
  2.1 Construction of super- and sub-solutions.     4
  2.2 System in a finite interval [-l,l].          7
3 Proof of Theorem 1.1.                17
References.                     22
zh_TW
dc.format.extent 329196 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1027510071en_US
dc.subject (關鍵詞) 行進波解zh_TW
dc.subject (關鍵詞) 擴散性zh_TW
dc.subject (關鍵詞) SIR modelen_US
dc.subject (關鍵詞) traveling wave solutionen_US
dc.title (題名) 一個具擴散性的SIR模型之行進波解zh_TW
dc.title (題名) Traveling wave solutions for a diffusive SIR modelen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1]  Shangbing Ai and Wenzhang Huang. Travelling waves for a reaction–diffusion system in population dynamics and epidemiology. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135(4):663–675, 07 2007.

[2]  Steven R. Dunbar. Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol., 17(1):11–32, 1983.

[3]  Steven R. Dunbar. Traveling wave solutions of diffusive Lotka-Volterra equations: a het-eroclinic connection in R4. Trans. Amer. Math. Soc., 286(2):557–594, 1984.

[4]  Sheng-Chen Fu. The existence of traveling wave fronts for a reaction-diffusion system modelling the acidic nitrate-ferroin reaction. Quart. Appl. Math., 72(4):649??64, 2014.

[5]  Sheng-Chen Fu. Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl., 435(1):20–37, 2016.

[6]  Philip Hartman. Ordinary differential equations, volume 38 of Classics in Applied Math-ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e: 34002)], With a foreword by Peter Bates.

[7]  Yuzo Hosono and Bilal Ilyas. Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlinear World, 1(3):277–290, 1994.

[8]  Yuzo Hosono and Bilal Ilyas. Traveling waves for a simple diffusive epidemic model. Math. Models Methods Appl. Sci., 5(7):935–966, 1995.

[9]  Wenzhang Huang. Traveling waves for a biological reaction-diffusion model. J. Dynam. Differential Equations, 16(3):745–765, 2004.

[10] Anders Källén. Thresholds and travelling waves in an epidemic model for rabies. Nonlin-ear Anal., 8(8):851–856, 1984.

[11] Xiang-Sheng Wang, Haiyan Wang, and Jianhong Wu. Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst., 32(9): 3303–3324, 2012.
zh_TW