學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 An efficient incremental learning mechanism for tracking concept drift in spam filtering
作者 Sheu, Jyh-Jian
許志堅
Chu, Ko-Tsung
Lee, Cheng-Chi
Li, Nien-Feng
貢獻者 廣播電視學系
關鍵詞 data mining; decision tree; e-mail; filtration; learning
日期 2017
上傳時間 27-七月-2017 12:54:39 (UTC+8)
摘要 This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email`s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email`s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment. © 2017 Sheu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
關聯 PLoS ONE, 12(2), 論文編號 e0171518
資料類型 article
DOI http://dx.doi.org/10.1371/journal.pone.0171518
dc.contributor 廣播電視學系-
dc.creator (作者) Sheu, Jyh-Jianen-US
dc.creator (作者) 許志堅zh-tw
dc.creator (作者) Chu, Ko-Tsungen-US
dc.creator (作者) Lee, Cheng-Chien-US
dc.creator (作者) Li, Nien-Fengen-US
dc.date (日期) 2017-
dc.date.accessioned 27-七月-2017 12:54:39 (UTC+8)-
dc.date.available 27-七月-2017 12:54:39 (UTC+8)-
dc.date.issued (上傳時間) 27-七月-2017 12:54:39 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/111428-
dc.description.abstract (摘要) This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email`s header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1) Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email`s content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2) Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3) We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment. © 2017 Sheu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.-
dc.format.extent 1125791 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) PLoS ONE, 12(2), 論文編號 e0171518-
dc.subject (關鍵詞) data mining; decision tree; e-mail; filtration; learning-
dc.title (題名) An efficient incremental learning mechanism for tracking concept drift in spam filteringen-US
dc.type (資料類型) article-
dc.identifier.doi (DOI) 10.1371/journal.pone.0171518-
dc.doi.uri (DOI) http://dx.doi.org/10.1371/journal.pone.0171518-