學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 Bi0.5Sb1.5Te3+0.33 wt% aerogel與Cu0.02Bi2Te2.7Se0.3熱電薄膜與元件之熱電性質研究
Thermoelectric properties of Bi0.5Sb1.5Te3+0.33 wt% aerogel and Cu0.02Bi2Te2.7Se0.3 thermoelectric thin film and device作者 何駿佑
Ho, Chun Yu貢獻者 陳洋元
Chen, Yang Yuan
何駿佑
Ho, Chun Yu關鍵詞 熱電材料
鉍化碲
熱電元件
Thermoelectric material
Bismuth tellurium
Thermoelectric device日期 2017 上傳時間 10-八月-2017 09:59:48 (UTC+8) 摘要 近幾年來,熱電材料蓬勃發展是許多物理、化學以及材料科學家的熱門研究的方向,然而此一跨領域的基礎研究工作處於萌芽的階段。熱電材料的益處在於可將熱機或是冷凍機之上所產生的廢熱轉化成電能。本研究利用鉍化碲(Bismuth Tellurium)在室溫附近具有一熱電優質係數(ZT)為1.0的熱電表現,其具有非常低的熱傳導率以及適當的載子傳輸性質,因此Bi-Te的合金系列成為大家研究的趨勢,成為另一項重大的焦點引發相當的關注。鉍化碲元素皆是地球殼中豐富的元素,且鉍化碲是對人無毒且對環境無害的化合物,相較於其他高性能熱電材料(一般由稀少元素/貴金屬組成),具有非常大商業化的潛力。鉍化碲本身為非常穩定的多層層狀結構(Quintuple Layer),表現出極低的熱傳導率以及良好的導電性。為了未來能製作出微小的熱電模組,本研究利用射頻磁控濺鍍系統(Radio-Frequency Magnetron Sputtering System)調控濺鍍參數的方式,得到最佳熱電性質之薄膜後,再使用半導體製程技術製作微結構的陣列熱電薄膜,利用光微影製程及金屬遮罩兩種分別不同的方式決定所需之電極和薄膜陣列之圖形。本論文使用磁控濺鍍設備,靶材n-type和p-type分別選用Cu0.02Bi2Te2.7Se0.3 和Bi0.5Sb1.5Te3+0.33 wt% Aerogel之熱電材料,經由實驗改變磁控濺鍍的工作壓力、RF power,再透過ZEM-3、EDS對薄膜的研究分析得到(最佳鍍膜參數) 最佳鍍膜品質參數(seebeck、電阻)。決定鍍膜參數後使用本研究開發的兩種方式製作微結構熱電元件,一使用光微影半導體製程,二使用金屬遮罩,針對兩種製程方式所得的n-type和p-type陣列熱電薄膜成長過程做比較與研究探討。
In recent years, physicists, chemists and material scientists at many major universities and research institutions throughout the world are attempting to create novel materials with high thermoelectric (TE) efficiency. It will be beneficial to harvest waste heat into electrical energy. Especially heating and cooling are other major applications for this class of new TE materials. At present the thermoelectric (TE) material bismuth telluride (Bi2Te3) baesd systems exhibit best figure of merit (ZT). Bismuth and tellurium are earth-abundant elements and Bi2Te3 is non-toxic to human beings and the environment. Therefore, it has great potential in commercial implements. Bismuth telluride is a quintuple layer-structured compound possessing ultralow thermal conductivity and moderate electrical conductivity. In this work, the TE thin film and device are fabricated and optimized by Radio-Frequency Magnetron Sputtering System (RFMSS) and the influence of the preparative parameters such as working pressure and working power of RF sputtering are investigated. In this study, we used the magnetron sputtering equipment and the thermoelectric materials n-type target and p-type target were Cu0.02Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3+0.33 wt% aerogel, respectively. In this study, the experimental changes the magnetron sputtering working pressure, RF power before the ZEM-3, EDS analysis the thin film thermoelectric properties to get the best thin film quality parameters (Seebeck coefficient, resistivity, power factor). After the thin film parameters were determined, the microstructural thermoelectric 442 pairs device were fabricated by the photolithography semiconductor process, and n-type and p-type arrays used by photolithography to define a pattern and deposit Au electrodes onto the substrate by thermal evaporation.參考文獻 [1] 黃昭仁,挑戰常溫熱溫差發電技術,CTIMES,2013/5/16[2] Adv.EnergyMater.2011,1,577–587[3] Speech and Hearing Science, Historical Review, Thomas Johann Seebeck http://www.ling.fju.edu.tw/hearing/index.htm[4] 鄭安良,P型熱電材料Bi0.5Sb1.5Te3之合成與分析,國立中山大學電機工程學系碩士論文[5] Danick Briand, Eric Yeatman and Shad Roundy, ” Micro Thermoelectric Generators,” Micro Energy Harvesting, 2015, pp 245-246[6] G.S.Nolas,J.Sharp,andH. J. Goldsmid, “Thermoelectrics:basic principles and new materials developments” ,Springer,292(2011).[7] O. Yamashita, “Thermoelectric properties of heavily GaP-and P-doped Si0.95Ge0.05”,J.Appl.Phys.,89, 1(2011).[8] H. Wang, J. F. Li, C. W. Nan, and M. Zhou, “High-performance Ag0.8Pb18+XSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”,Appl. Phys. Lett.,88,092104(2006).[9] D.W. Liu, J.F. Liz, J. Electrochem. Soc. 155 (7) (2008) D493.[10] G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Nature 2 (2003) 528.[11] R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Solid-State Electron. 53 (2009) 684.[12] A. Suresh, K. Chatterjee, V.K.R. Sharma, S. Ganguly, K. Kargupta, D. Banerjee, J. Electron. Mater. 38 (3) (2009) 449.[13] B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleurial, N.V. Myung,Electrochim. Acta 50 (2005) 4371.[14] S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, J. Crys. Growth 277 (2005) 274.[15] Y. Miyazaki, T. Kajitani, J. Cryst. Growth 229 (2001) 542.[16] M. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, J. Electrochem. Soc. 149 (2002) C546.[17] K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, W.J. Fischer, J. Solid State Electrochem. 7 (2003) 714.[18] Y. Ma, A. Johansson, E. Ahlberg, A.E.C. Palmqvist, Electrochim. Acta 55 (2010) 4610.[19] W. Glatz, L. Durrer, E. Schwyter, C. Hierold, Electrochim. Acta 54 (2008) 755.[20] D. M. Rowe, “Thermoelectrics Handbook :Macro to Nano”,Ch3(2005).[21] B. Sales,D. Mandrus,and R.K. Williams, “Filled skutteruditeantimonides:A new class of thermoelectric materials”,Science,272,1325(1996).[22] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature PublishingGroup7,105-114(2008)[23] 李政憲,n型鉍-硒-碲及p型鉍-銻-碲熱電材料之製作與研究國立政治大學理學院應用物理研究所碩士論,2012[24] J.L. Cui,Thermoelectric properties of Cu-doped n-type(Bi2Te3)0.9-(Bi2-xCuxSe3)0.1(x =0–0.2) alloys, Journal of Solid State Chemistry, 180, 3583–3587(2007)[25] Sin-Shien Lin, et al., Journal of applide physics, 110, 093707 (2011)[26] Bongyoung Yoo, et al,Journal of Alloys and Compounds 706 (2017) 576e583 描述 碩士
國立政治大學
應用物理研究所
104755013資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104755013 資料類型 thesis dc.contributor.advisor 陳洋元 zh_TW dc.contributor.advisor Chen, Yang Yuan en_US dc.contributor.author (作者) 何駿佑 zh_TW dc.contributor.author (作者) Ho, Chun Yu en_US dc.creator (作者) 何駿佑 zh_TW dc.creator (作者) Ho, Chun Yu en_US dc.date (日期) 2017 en_US dc.date.accessioned 10-八月-2017 09:59:48 (UTC+8) - dc.date.available 10-八月-2017 09:59:48 (UTC+8) - dc.date.issued (上傳時間) 10-八月-2017 09:59:48 (UTC+8) - dc.identifier (其他 識別碼) G0104755013 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/111790 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用物理研究所 zh_TW dc.description (描述) 104755013 zh_TW dc.description.abstract (摘要) 近幾年來,熱電材料蓬勃發展是許多物理、化學以及材料科學家的熱門研究的方向,然而此一跨領域的基礎研究工作處於萌芽的階段。熱電材料的益處在於可將熱機或是冷凍機之上所產生的廢熱轉化成電能。本研究利用鉍化碲(Bismuth Tellurium)在室溫附近具有一熱電優質係數(ZT)為1.0的熱電表現,其具有非常低的熱傳導率以及適當的載子傳輸性質,因此Bi-Te的合金系列成為大家研究的趨勢,成為另一項重大的焦點引發相當的關注。鉍化碲元素皆是地球殼中豐富的元素,且鉍化碲是對人無毒且對環境無害的化合物,相較於其他高性能熱電材料(一般由稀少元素/貴金屬組成),具有非常大商業化的潛力。鉍化碲本身為非常穩定的多層層狀結構(Quintuple Layer),表現出極低的熱傳導率以及良好的導電性。為了未來能製作出微小的熱電模組,本研究利用射頻磁控濺鍍系統(Radio-Frequency Magnetron Sputtering System)調控濺鍍參數的方式,得到最佳熱電性質之薄膜後,再使用半導體製程技術製作微結構的陣列熱電薄膜,利用光微影製程及金屬遮罩兩種分別不同的方式決定所需之電極和薄膜陣列之圖形。本論文使用磁控濺鍍設備,靶材n-type和p-type分別選用Cu0.02Bi2Te2.7Se0.3 和Bi0.5Sb1.5Te3+0.33 wt% Aerogel之熱電材料,經由實驗改變磁控濺鍍的工作壓力、RF power,再透過ZEM-3、EDS對薄膜的研究分析得到(最佳鍍膜參數) 最佳鍍膜品質參數(seebeck、電阻)。決定鍍膜參數後使用本研究開發的兩種方式製作微結構熱電元件,一使用光微影半導體製程,二使用金屬遮罩,針對兩種製程方式所得的n-type和p-type陣列熱電薄膜成長過程做比較與研究探討。 zh_TW dc.description.abstract (摘要) In recent years, physicists, chemists and material scientists at many major universities and research institutions throughout the world are attempting to create novel materials with high thermoelectric (TE) efficiency. It will be beneficial to harvest waste heat into electrical energy. Especially heating and cooling are other major applications for this class of new TE materials. At present the thermoelectric (TE) material bismuth telluride (Bi2Te3) baesd systems exhibit best figure of merit (ZT). Bismuth and tellurium are earth-abundant elements and Bi2Te3 is non-toxic to human beings and the environment. Therefore, it has great potential in commercial implements. Bismuth telluride is a quintuple layer-structured compound possessing ultralow thermal conductivity and moderate electrical conductivity. In this work, the TE thin film and device are fabricated and optimized by Radio-Frequency Magnetron Sputtering System (RFMSS) and the influence of the preparative parameters such as working pressure and working power of RF sputtering are investigated. In this study, we used the magnetron sputtering equipment and the thermoelectric materials n-type target and p-type target were Cu0.02Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3+0.33 wt% aerogel, respectively. In this study, the experimental changes the magnetron sputtering working pressure, RF power before the ZEM-3, EDS analysis the thin film thermoelectric properties to get the best thin film quality parameters (Seebeck coefficient, resistivity, power factor). After the thin film parameters were determined, the microstructural thermoelectric 442 pairs device were fabricated by the photolithography semiconductor process, and n-type and p-type arrays used by photolithography to define a pattern and deposit Au electrodes onto the substrate by thermal evaporation. en_US dc.description.tableofcontents 第一章 緒論 11.1 前言 11.2 研究目的 21.3 銻化鉍合金系列的材料介紹 3第二章 介紹 42.1 熱電性質回顧 42.1.1 Seebeck效應 42.1.2 Peltier效應 62.1.3 Thomson效應 72.2 熱電優值與理論計算 82.2.1 熱電優值 82.2.2 熱電轉換效率 92.2.3 聲子熱導對熱傳導係數的影響 102.2.4 電子熱導對熱傳導係數的影響 102.2.5 熱電材料分類與應用 112.3 量測原理 122.3.1 Seebeck 係數 122.3.2 電阻率量測 132.3.3 熱傳導係數量測 142.4.1 X射線粉末繞射儀 162.4.2 掃描式電子顯微鏡(SEM) 172.4.3 X光能譜散佈分析儀(EDX) 18第三章 實驗方法與製程設備 193.1 實驗流程圖 193.2 樣品製備 193.2.1 原始材料與製備 193.2.2 初步燒結 203.2.3 粉末操作儀器(TGA,XRD) 223.2.4 火光放電電漿燒結(SPS) 223.3 元件製程與儀器介紹 223.3.1 基板的實驗步驟 223.3.2 金屬遮罩設計 233.3.3 熱蒸鍍系統 263.3.4 射頻磁控濺鍍系統 293.4 製程量測設備 303.4.1 掃描式電子顯微鏡 303.4.2 X-ray繞射儀 313.4.3 ZEM-3 323.4.4 膜厚量測儀 333.5 陣列薄膜製程介紹 34第四章 實驗結果與討論 354.1 CuxBi2Te2.7Se0.3 (x=0.01, 0.02)實驗結果與討論 354.1.1 晶體結構分析 354.1.2 SEM結果EDX成份分析 374.2 N-type與P-type熱電性質分析與比較 424.1.3 N型與P型熱電材料的熱電性質與熱傳導分析結果 424.2 熱電薄膜的製備與薄膜品質 494.2.1 濺鍍參數對熱電薄膜的影響 494.2.2 XRD 特性 554.1.3 SEM圖結果 564.3 熱電元件製備與品質 58第五章 結論 60參考文獻 61 zh_TW dc.format.extent 6134192 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104755013 en_US dc.subject (關鍵詞) 熱電材料 zh_TW dc.subject (關鍵詞) 鉍化碲 zh_TW dc.subject (關鍵詞) 熱電元件 zh_TW dc.subject (關鍵詞) Thermoelectric material en_US dc.subject (關鍵詞) Bismuth tellurium en_US dc.subject (關鍵詞) Thermoelectric device en_US dc.title (題名) Bi0.5Sb1.5Te3+0.33 wt% aerogel與Cu0.02Bi2Te2.7Se0.3熱電薄膜與元件之熱電性質研究 zh_TW dc.title (題名) Thermoelectric properties of Bi0.5Sb1.5Te3+0.33 wt% aerogel and Cu0.02Bi2Te2.7Se0.3 thermoelectric thin film and device en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] 黃昭仁,挑戰常溫熱溫差發電技術,CTIMES,2013/5/16[2] Adv.EnergyMater.2011,1,577–587[3] Speech and Hearing Science, Historical Review, Thomas Johann Seebeck http://www.ling.fju.edu.tw/hearing/index.htm[4] 鄭安良,P型熱電材料Bi0.5Sb1.5Te3之合成與分析,國立中山大學電機工程學系碩士論文[5] Danick Briand, Eric Yeatman and Shad Roundy, ” Micro Thermoelectric Generators,” Micro Energy Harvesting, 2015, pp 245-246[6] G.S.Nolas,J.Sharp,andH. J. Goldsmid, “Thermoelectrics:basic principles and new materials developments” ,Springer,292(2011).[7] O. Yamashita, “Thermoelectric properties of heavily GaP-and P-doped Si0.95Ge0.05”,J.Appl.Phys.,89, 1(2011).[8] H. Wang, J. F. Li, C. W. Nan, and M. Zhou, “High-performance Ag0.8Pb18+XSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”,Appl. Phys. Lett.,88,092104(2006).[9] D.W. Liu, J.F. Liz, J. Electrochem. Soc. 155 (7) (2008) D493.[10] G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Nature 2 (2003) 528.[11] R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, Solid-State Electron. 53 (2009) 684.[12] A. Suresh, K. Chatterjee, V.K.R. Sharma, S. Ganguly, K. Kargupta, D. Banerjee, J. Electron. Mater. 38 (3) (2009) 449.[13] B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleurial, N.V. Myung,Electrochim. Acta 50 (2005) 4371.[14] S. Michel, S. Diliberto, C. Boulanger, N. Stein, J.M. Lecuire, J. Crys. Growth 277 (2005) 274.[15] Y. Miyazaki, T. Kajitani, J. Cryst. Growth 229 (2001) 542.[16] M. Martin-Gonzalez, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, J. Electrochem. Soc. 149 (2002) C546.[17] K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, W.J. Fischer, J. Solid State Electrochem. 7 (2003) 714.[18] Y. Ma, A. Johansson, E. Ahlberg, A.E.C. Palmqvist, Electrochim. Acta 55 (2010) 4610.[19] W. Glatz, L. Durrer, E. Schwyter, C. Hierold, Electrochim. Acta 54 (2008) 755.[20] D. M. Rowe, “Thermoelectrics Handbook :Macro to Nano”,Ch3(2005).[21] B. Sales,D. Mandrus,and R.K. Williams, “Filled skutteruditeantimonides:A new class of thermoelectric materials”,Science,272,1325(1996).[22] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature PublishingGroup7,105-114(2008)[23] 李政憲,n型鉍-硒-碲及p型鉍-銻-碲熱電材料之製作與研究國立政治大學理學院應用物理研究所碩士論,2012[24] J.L. Cui,Thermoelectric properties of Cu-doped n-type(Bi2Te3)0.9-(Bi2-xCuxSe3)0.1(x =0–0.2) alloys, Journal of Solid State Chemistry, 180, 3583–3587(2007)[25] Sin-Shien Lin, et al., Journal of applide physics, 110, 093707 (2011)[26] Bongyoung Yoo, et al,Journal of Alloys and Compounds 706 (2017) 576e583 zh_TW