學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 建立臺灣地區半動態基準之水平速度場與變形模型研究
The Study of Establishing Horizontal Velocity and Deformation Model of Semi-Dynamic Datum in Taiwan Area
作者 熊育賢
Hsiung, Yu Hsien
貢獻者 甯方璽
熊育賢
Hsiung, Yu Hsien
關鍵詞 CORS
GNSS
板塊運動
速度場
變形模型
CORS
GNSS
Plate motion
Velocity field
Deformation model
日期 2017
上傳時間 10-八月-2017 10:05:36 (UTC+8)
摘要 國家坐標系統是各項測量作業的基礎,而大地基準的選擇及建立更是會直接影響最後的測量成果,進一步的影響各項國家建設、民生工業以及人民的土地財產等權益。板塊運動之中尤其是非線性的板塊運動更是會改變坐標框架中參考站的相對位置,隨著時間的推移進而導致框架的幾何精度下降。而臺灣地處歐亞板塊及菲律賓海板塊的交界處,頻繁的板塊運動會造成地震、火山以及其他的自然災害,且臺灣各個區域也會因為板塊間的非線性運動而往不同的方向旋轉、位移。目前臺灣使用的坐標系統為TWD97 (Taiwan Datum 97 ),是建立於一個固定的線性框架ITRF94(The International Terrestrial Reference Frame 94)下之靜態基準,因此並不能精確的表達臺灣地區複雜的地殼變動情形,臺灣需要進行大地基準的革新以解決坐標框架變形之問題,即是在原有的靜態基準加上速度場與變形模型來改正因地殼運動造成之坐標偏移。本研究利用 2005 年至 2015 年間之臺灣地區連續運行參考站 GPS 觀測資料計算臺灣地區水平速度場情形,並參考日本、紐西蘭等國之速度模型建立方式,以內插、曲面擬合、局部加權回歸散點平滑等方法建立臺灣地區水平速度與變形模型。而臺灣地區參考站坐標解算之水平精度為 2mm-3mm、高程精度為 6mm-10mm,而速度場之年度平均標準差在 N 軸為 3.81mm,E 軸為 5.18mm。水平速度場模型方面以內插法中的線性及三次樣條內插法建立之模型有最好的精度,另外透過變形模型可以有效將地震之同震位移對坐標預測之影響消除,使速度模型之使用年限得以延長。
National coordinate system is the foundation of surveying engineering, the establishment and the selection of geodetic datum would directly impact the accuracy of final result. Plate motion will cause earthquakes, volcanic eruptions and other natural disasters. Plate motion especially non-linear motion can also change the relationship between stations in the reference frame. Therefore, a rational and reliable reference frame is needed to ensure the Euclidean integrity quality. Taiwan is located along the bounding of the Eurasian and the Philippine plate, and is therefore a region of non-rigid motion and therefore will shift and rotate in different directions due to the changing stress field. Taiwan’s current coordinate system TWD97 is built by a fixed single term linear model ITRF94. It is not able to precisely model the non-linear motion of the crustal in the Taiwan region. Therefore, Taiwan needs velocity and deformation model to correct the distortion which caused by the crustal motion. This study used 11 years of Taiwan CORS GPS data to investigate the horizontal velocity field in Taiwan and established the horizontal velocity and deformation model by curve fitting, interpolation and LOWESS method. The horizontal coordinate accuracy of the stations is about 2mm-3mm, the vertical accuracy is about 6mm-10mm, and the average standard deviation of velocity field is 3.81mm in N axis, 5.18mm in E axis. As for velocity model, linear and cubic spline interpolations have better model accuracy. In addition, the deformation model can effectively eliminate the influence of coseismic deformation, so that the velocity model will not lose its utility.
參考文獻 一、 中文參考文獻

內政部地政司衛星測量中心,2016, 「國家坐標系統之訂定」。
內政部國土測繪中心,2012,「大地基準及一九九七坐標系統 2010 年成果」。
內政部國土測繪中心,2013,「102年度建置現代化TWD97國家坐標系統變位模式」。
內政部國土測繪中心,2016,「105年度精進現代化TWD97國家坐標系統變位模式」。
孔冠傑, 2013,「臺灣西南部動態坐標系統之建立」,國立成功大學測量及空間資訊研究所碩士論文:台南。
王亞饕、董蘭芳、 倪奎, 2007, 「基於 Biharmonic 樣條插植的圖像漸變算法及實現」,『 中國圖像圖形學報』, 12(12): 2189-2194。
邱元宏,2016,「時變基準於臺灣基本測量與地籍測量影響探討」,國立交通大學土木工程學系博士論文:新竹。
郭徐伸,2014,「建立臺灣半動態基準之水平速度模型」,測量及空間資訊研究所碩士論文:台南。
郭隆晨,2000,「高精度 GPS 衛星測量在地殼變形觀測之研究」,國立交通大學土木工程學系博士論文:新竹。
陳俊勇,2004,「大地基準的現代化和衛星大地測量新成果」,『地球科學進展』,19(1):12-19。
蔡旻倩,2013,「臺灣西南部地殼變形與地震活動相關性研究」,國立中央大學地球科學學系博士論文:桃園。

二、 外文參考文獻

Altamimi, Z., Collilieux, X., and Métivier, L., 2011,“ ITRF2008: an improved solution of the international terrestrial reference frame.”, Journal of Geodesy ,85(8): 457-473.
Altamimi, Z., Sillard, P., and Boucher, C., 2002,“ ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications.”Journal of Geophysical Research: Solid Earth, 107(B10).
Bird, P., 2003,“An updated digital model of plate boundaries”,Geochemistry, Geophysics, Geosystems , 4(3).
Blewitt, G., 1989,“Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km.”, Journal of Geophysical Research: Solid Earth , 94(B8): 10187-10203.
Blick, G., Crook, C., Grant, D., and Beavan, J., 2005,“Implementation of a semi-dynamic datum for New Zealand.”, pp. 38-43 in A Window on the Future of Geodesy:, Springer, Berlin:Heidelberg
Bock, Y., Gourevitch, S., Counselman, C., King, R., and Abbot, R., 1986, “Interferometric analysis of GPS phase observations.”,Manuscripta geodaetica , 11: 282-288.
Boehm, J., Heinkelmann, R., and Schuh, H., 2007,“Short Note: A global model of pressure and temperature for geodetic applications.”, Journal of Geodesy, 81: 679-683.
Bookstein, F., 1989,“Principal warps: Thin-plate splines and the decomposition of deformations.”,IEEE Transactions on pattern analysis and machine intelligence, 11(6): 567-585.
Bourne, S.J., England, P.C., and Parsons, B., 1998,“The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults”, Nature, 391(6668):655-659.
Casula, G., 2015,“GPS Data Processing of Five Years of More Than 300 Permanent Station Archive with the Distributed Sessions Approach in Italian Peninsula”, Paper presented at the 1st International Electronic Conference on Remote Sensing, Aristotle University of Thessaloniki, Greece,June 22-July 5.
Ching, K. E., and Chen, K. H., 2015, “Tectonic effect for establishing a semi-dynamic datum in Southwest Taiwan”, Earth, Planets and Space, 67(1):1-14.
Chiu, Y. H., and Shih, P. T. Y., 2014, “National Datum Uncertainty due to Reference Frame Tranformation : Case Study for the Geodetic Datum of Taiwan”, Journal of Surveying Engineering , 140(3):05014002.
Chlieh, M., De Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J., and Feigl, K.L., 2004,“Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. ”,Geophysical Journal International , 158(2):695-711.
Cleveland, W. S., 1979,“Robust locally weighted regression and smoothing scatterplots.”, Journal of the American statistical association , 74(368):829-836.
Dong, D., 1993, The horizontal velocity field in southern California from a combination of terrestrial and space-geodetic data. ,Unpublished doctoral dissertation, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Massachusetts.
Dong, D., Herring, T. A., and King, R. W., 1998,“Estimating regional deformation from a combination of space and terrestrial geodetic data.”, Journal of Geodesy , 72:200-214.
Dong, D., Bock, Y., 1989,“Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California.”,Journal of Geophysical Research: Solid Earth , 94(B4):3949-3966.
Dubbini, M., Cianfarra, P., Casula, G., Capra, A., and Salvini, F., 2010, “Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting.”,JOURNAL OF GEOPHYSICAL RESEARCH, 115,B12421.
Grant, D.B., 1995,“ A dynamic datum for a dynamic cadastre.”, Australian surveyor, 40(4): 22-28.
Grant, D.B., Blick, G.H., Pearse, M.B., Beavan, R.J., and Morgan, P.J., 1999, “ The development and implementation of New Zealand Geodetic Datum 2000.”pp 18-30 in IUGG99 General Assembly : Birmingham UK.
Grant, D., and Blick, G., 1998,“A new geocentric datum for New Zealand.”, NZ Surv , 288: 40-42.
Han, J. Y., Yu, S. W., and B. H. W. van Gelder,2011, “Time-variant reference frame transformations in a deforming area”, AustrSurvey Review, 43(321):282-295
Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson, J. M., and Rocken, C., 2003,“Improvement of the analysis strategy of GEONET.”, Bulletin of the Geographical Survey Institute , 49:11-37.
Hatanaka, Y., Tobita, M., Kuroishi, Y., and Imakiire, T., 2007,“Efficient Maintenance of the Japanese Geodetic Datum 2000 Using Crustal Deformation Models–PatchJGD & Semi-Dynamic Datum.”, Bulletin of the Geographical Survey Institute , 54:49-59.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C., 2015a, GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program. , Cambridge:MIT Press.
Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C., 2015b, GAMIT Reference Manual, GPS Analysis at MIT. , Cambridge:MIT Press.
Herring, T.A., King, R.W., and McClusky, S.C., 2010, Introduction to Gamit/Globk ., Cambridge:MIT Press.
Jordan, A., Denys, P., and Blick, G., 2007,“Implementing localised deformation models into a semi-dynamic datum.”, pp. 631-637 in Dynamic Planet., edited by Paul T., Berlin:Springer.
McCaffrey, R., 1995, DEFNODE users’ guide. , NewYork:Rensselaer Polytechnic Institute.
McCaffrey, R., Qamar, A., King, R., Wells, R., Khazaradze, G., Williams, C., Stevens, C., Vollick, J., and Zwick, P., 2007, “Fault locking, block rotation and crustal deformation in the Pacific Northwest.”,Geophysical Journal International , 169(3):1315-1340.
McCarthy, D., and Petit, G., 2004, IERS conventions (2003): DTIC Document.
Morgan, J.G., 1987, “The north American datum of 1983.”,The Leading Edge, 6(1):27-33.
Murakami, M., and Ogi, S., 1999, “Realization of the Japanese Geodetic Datum 2000 (JGD2000).”,Bull. Geogr. Surv. Inst., Vol. 45:1-10.
Nur, A., and Mavko, G., 1974,“Postseismic viscoelastic rebound.”,Science, 183(4121):204-206.
Okada, Y., 1985,“Surface deformation due to shear and tensile faults in a half-space.”, Bulletin of the seismological society of America, 75(4):1135-1154.
Pearse, M. B., 1998, “A modern geodetic reference system for New Zealand”, UNISURV S ,(Vol. 52).
Pearson, C., McCaffrey, R., Elliott, J. L., & Snay, R., 2009, “HTDP 3.0: Software for coping with the coordinate changes associated with crustal motion. ”, Journal of Surveying Engineering , 136(2): 80-90.
Pearson, C., and Snay, R., 2013, “Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. ” ,GPS solutions, 17(1):1-15.
Petit, G., and Luzum, B., 2010, IERS conventions (2010): DTIC Document.
Savage, J.C., 1980, “ Dislocations in seismology. ”, Dislocations in solids, 3: 251-339.
Schaffrin, B., and Bock, Y., 1988, “A unified scheme for processing GPS dual-band phase observations. ”, Bulletin Geodesique, 62(2): 142-160.
Schwarz, C. R., and Wade, E. B., 1990, “The North American datum of 1983: Project methodology and execution. ”, Journal of Geodesy, 64(1):28-62.
Sillard, P., and Boucher, C., 2001, “A review of algebraic constraints in terrestrial reference frame datum definition. ”,Journal of Geodesy, 75(2-3): 63-73.
Snay, R. A., 1999, “ Using the HTDP software to transform spatial coordinates across time and between reference frames. ”, Surveying and Land Information Systems, 59(1):15-25.
Snay, R. A, & Soler, T., 2000, “ Modern terrestrial reference systems, Part 2: The evolution of NAD 83. ”, Professional Surveyor, 20(2): 1-2.
Teng, L. S., 1990, “Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan.”, Tectonophysics, 183(1): 57-76.
Thatcher, W., 1979, “Systematic inversion of geodetic data in central California. ”, Journal of Geophysical Research: Solid Earth, 84(B5): 2283-2295.
Thatcher, W., 1983, “Nonlinear Strain Buildup and the Earthquake Cycle. ” J. geophys. Res, 88: 5893-5902.
Tregoning, P., and Jackson, R., 1999, “The need for dynamic datums.”Geomatics Research Australasia, 87-102.
Tse, S.T., and Rice, J. R., 1986, “ Crustal earthquake instability in relation to the depth variation of frictional slip properties. ”, J. geophys. Res, 91(9): 452-459,472.
Tsuji, H., 2005, “Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI. ”,Bulletin of the Geographical Survey Institute, 52.
Walcott, R.I., 1984, “An introduction to the recent crustal movements of New Zealand. ”, Royal Society of New Zealand
Yu, S.B., Chen, H.Y. , and Kuo, L.C., 1997, “Velocity field of GPS stations in the Taiwan area. ” Tectonophysics , 274: 41-59.
Yu, S.B., and Kuo, L.C., 2001, “Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. ” Tectonophysics, 333: 199-217.

三、 網頁參考文獻

IERS. (2016). International Earth Rotation and Reference Systems Service. Retrieved December 10,2016 from IERS on the World Wide Web: https://www.iers.org/IERS/EN/Home/home_node.html
描述 碩士
國立政治大學
地政學系
104257027
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104257027
資料類型 thesis
dc.contributor.advisor 甯方璽zh_TW
dc.contributor.author (作者) 熊育賢zh_TW
dc.contributor.author (作者) Hsiung, Yu Hsienen_US
dc.creator (作者) 熊育賢zh_TW
dc.creator (作者) Hsiung, Yu Hsienen_US
dc.date (日期) 2017en_US
dc.date.accessioned 10-八月-2017 10:05:36 (UTC+8)-
dc.date.available 10-八月-2017 10:05:36 (UTC+8)-
dc.date.issued (上傳時間) 10-八月-2017 10:05:36 (UTC+8)-
dc.identifier (其他 識別碼) G0104257027en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/111814-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 104257027zh_TW
dc.description.abstract (摘要) 國家坐標系統是各項測量作業的基礎,而大地基準的選擇及建立更是會直接影響最後的測量成果,進一步的影響各項國家建設、民生工業以及人民的土地財產等權益。板塊運動之中尤其是非線性的板塊運動更是會改變坐標框架中參考站的相對位置,隨著時間的推移進而導致框架的幾何精度下降。而臺灣地處歐亞板塊及菲律賓海板塊的交界處,頻繁的板塊運動會造成地震、火山以及其他的自然災害,且臺灣各個區域也會因為板塊間的非線性運動而往不同的方向旋轉、位移。目前臺灣使用的坐標系統為TWD97 (Taiwan Datum 97 ),是建立於一個固定的線性框架ITRF94(The International Terrestrial Reference Frame 94)下之靜態基準,因此並不能精確的表達臺灣地區複雜的地殼變動情形,臺灣需要進行大地基準的革新以解決坐標框架變形之問題,即是在原有的靜態基準加上速度場與變形模型來改正因地殼運動造成之坐標偏移。本研究利用 2005 年至 2015 年間之臺灣地區連續運行參考站 GPS 觀測資料計算臺灣地區水平速度場情形,並參考日本、紐西蘭等國之速度模型建立方式,以內插、曲面擬合、局部加權回歸散點平滑等方法建立臺灣地區水平速度與變形模型。而臺灣地區參考站坐標解算之水平精度為 2mm-3mm、高程精度為 6mm-10mm,而速度場之年度平均標準差在 N 軸為 3.81mm,E 軸為 5.18mm。水平速度場模型方面以內插法中的線性及三次樣條內插法建立之模型有最好的精度,另外透過變形模型可以有效將地震之同震位移對坐標預測之影響消除,使速度模型之使用年限得以延長。zh_TW
dc.description.abstract (摘要) National coordinate system is the foundation of surveying engineering, the establishment and the selection of geodetic datum would directly impact the accuracy of final result. Plate motion will cause earthquakes, volcanic eruptions and other natural disasters. Plate motion especially non-linear motion can also change the relationship between stations in the reference frame. Therefore, a rational and reliable reference frame is needed to ensure the Euclidean integrity quality. Taiwan is located along the bounding of the Eurasian and the Philippine plate, and is therefore a region of non-rigid motion and therefore will shift and rotate in different directions due to the changing stress field. Taiwan’s current coordinate system TWD97 is built by a fixed single term linear model ITRF94. It is not able to precisely model the non-linear motion of the crustal in the Taiwan region. Therefore, Taiwan needs velocity and deformation model to correct the distortion which caused by the crustal motion. This study used 11 years of Taiwan CORS GPS data to investigate the horizontal velocity field in Taiwan and established the horizontal velocity and deformation model by curve fitting, interpolation and LOWESS method. The horizontal coordinate accuracy of the stations is about 2mm-3mm, the vertical accuracy is about 6mm-10mm, and the average standard deviation of velocity field is 3.81mm in N axis, 5.18mm in E axis. As for velocity model, linear and cubic spline interpolations have better model accuracy. In addition, the deformation model can effectively eliminate the influence of coseismic deformation, so that the velocity model will not lose its utility.en_US
dc.description.tableofcontents 第一章 緒論 1

第一節 研究背景與動機 1

第二節 研究目的 3

第三節 論文架構 5

第二章 文獻回顧 6

第一節 大地基準 6

一、國際地球參考系統 ITRS、國際地球參考框架 ITRF 6
二、靜態、動態、半動態大地基準 8
三、臺灣現行之大地基準 10
四、各國之大地基準 11

第二節 速度場與變形模型 14

一、 地表變形種類 14
二、 速度場與變形模型建構 15
三、各國之速度場、變形模型 16
四、臺灣地區速度場 22
第三章 研究方法與理論基礎 27

第一節 實驗流程 27

第二節 研究資料及軟體介紹 32

一、資料來源 32
二、軟體介紹 35

第三節 GPS 觀測量處理 37

一、雙差觀測量計算 38
二、電離層延遲改正 40
三、法方程式解算 44
四、每日解聯合平差 45

第四節 時間序列與水平速度場 48

一、時間序列分析 48
二、水平速度場與區塊劃分 50

第五節 水平速度模型建立 51

一、多項式曲面擬合 51
二、內插法 53
三、局部加權回歸散點平滑法 55

第六節 地震變形模型建立 56

第四章 研究成果與分析 57

第一節 坐標與水平速度場 57

一、每日解與坐標解算成果 57
二、水平速度場解算成果 58

第二節 坐標預測分析 69

第三節 水平速度模型 75

一、 北部速度模型 76
二、 中西部速度模型 78
三、 西南部速度模型 80
四、 東部速度模型 83
五、 水平速度模型綜合分析 86

六、 水平速度模型外部資料驗證 92

第四節 地震變形模型 97

一、 2010 年 3 月 4 號高雄甲仙地震 98
二、 2013 年 10 月 31 號花蓮萬榮地震 102
第五章 結論與建議 104

第一節 結論 104

第二節 建議 106

參考文獻 107
zh_TW
dc.format.extent 6724465 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104257027en_US
dc.subject (關鍵詞) CORSzh_TW
dc.subject (關鍵詞) GNSSzh_TW
dc.subject (關鍵詞) 板塊運動zh_TW
dc.subject (關鍵詞) 速度場zh_TW
dc.subject (關鍵詞) 變形模型zh_TW
dc.subject (關鍵詞) CORSen_US
dc.subject (關鍵詞) GNSSen_US
dc.subject (關鍵詞) Plate motionen_US
dc.subject (關鍵詞) Velocity fielden_US
dc.subject (關鍵詞) Deformation modelen_US
dc.title (題名) 建立臺灣地區半動態基準之水平速度場與變形模型研究zh_TW
dc.title (題名) The Study of Establishing Horizontal Velocity and Deformation Model of Semi-Dynamic Datum in Taiwan Areaen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、 中文參考文獻

內政部地政司衛星測量中心,2016, 「國家坐標系統之訂定」。
內政部國土測繪中心,2012,「大地基準及一九九七坐標系統 2010 年成果」。
內政部國土測繪中心,2013,「102年度建置現代化TWD97國家坐標系統變位模式」。
內政部國土測繪中心,2016,「105年度精進現代化TWD97國家坐標系統變位模式」。
孔冠傑, 2013,「臺灣西南部動態坐標系統之建立」,國立成功大學測量及空間資訊研究所碩士論文:台南。
王亞饕、董蘭芳、 倪奎, 2007, 「基於 Biharmonic 樣條插植的圖像漸變算法及實現」,『 中國圖像圖形學報』, 12(12): 2189-2194。
邱元宏,2016,「時變基準於臺灣基本測量與地籍測量影響探討」,國立交通大學土木工程學系博士論文:新竹。
郭徐伸,2014,「建立臺灣半動態基準之水平速度模型」,測量及空間資訊研究所碩士論文:台南。
郭隆晨,2000,「高精度 GPS 衛星測量在地殼變形觀測之研究」,國立交通大學土木工程學系博士論文:新竹。
陳俊勇,2004,「大地基準的現代化和衛星大地測量新成果」,『地球科學進展』,19(1):12-19。
蔡旻倩,2013,「臺灣西南部地殼變形與地震活動相關性研究」,國立中央大學地球科學學系博士論文:桃園。

二、 外文參考文獻

Altamimi, Z., Collilieux, X., and Métivier, L., 2011,“ ITRF2008: an improved solution of the international terrestrial reference frame.”, Journal of Geodesy ,85(8): 457-473.
Altamimi, Z., Sillard, P., and Boucher, C., 2002,“ ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications.”Journal of Geophysical Research: Solid Earth, 107(B10).
Bird, P., 2003,“An updated digital model of plate boundaries”,Geochemistry, Geophysics, Geosystems , 4(3).
Blewitt, G., 1989,“Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km.”, Journal of Geophysical Research: Solid Earth , 94(B8): 10187-10203.
Blick, G., Crook, C., Grant, D., and Beavan, J., 2005,“Implementation of a semi-dynamic datum for New Zealand.”, pp. 38-43 in A Window on the Future of Geodesy:, Springer, Berlin:Heidelberg
Bock, Y., Gourevitch, S., Counselman, C., King, R., and Abbot, R., 1986, “Interferometric analysis of GPS phase observations.”,Manuscripta geodaetica , 11: 282-288.
Boehm, J., Heinkelmann, R., and Schuh, H., 2007,“Short Note: A global model of pressure and temperature for geodetic applications.”, Journal of Geodesy, 81: 679-683.
Bookstein, F., 1989,“Principal warps: Thin-plate splines and the decomposition of deformations.”,IEEE Transactions on pattern analysis and machine intelligence, 11(6): 567-585.
Bourne, S.J., England, P.C., and Parsons, B., 1998,“The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults”, Nature, 391(6668):655-659.
Casula, G., 2015,“GPS Data Processing of Five Years of More Than 300 Permanent Station Archive with the Distributed Sessions Approach in Italian Peninsula”, Paper presented at the 1st International Electronic Conference on Remote Sensing, Aristotle University of Thessaloniki, Greece,June 22-July 5.
Ching, K. E., and Chen, K. H., 2015, “Tectonic effect for establishing a semi-dynamic datum in Southwest Taiwan”, Earth, Planets and Space, 67(1):1-14.
Chiu, Y. H., and Shih, P. T. Y., 2014, “National Datum Uncertainty due to Reference Frame Tranformation : Case Study for the Geodetic Datum of Taiwan”, Journal of Surveying Engineering , 140(3):05014002.
Chlieh, M., De Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J., and Feigl, K.L., 2004,“Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. ”,Geophysical Journal International , 158(2):695-711.
Cleveland, W. S., 1979,“Robust locally weighted regression and smoothing scatterplots.”, Journal of the American statistical association , 74(368):829-836.
Dong, D., 1993, The horizontal velocity field in southern California from a combination of terrestrial and space-geodetic data. ,Unpublished doctoral dissertation, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Massachusetts.
Dong, D., Herring, T. A., and King, R. W., 1998,“Estimating regional deformation from a combination of space and terrestrial geodetic data.”, Journal of Geodesy , 72:200-214.
Dong, D., Bock, Y., 1989,“Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California.”,Journal of Geophysical Research: Solid Earth , 94(B4):3949-3966.
Dubbini, M., Cianfarra, P., Casula, G., Capra, A., and Salvini, F., 2010, “Active tectonics in northern Victoria Land (Antarctica) inferred from the integration of GPS data and geologic setting.”,JOURNAL OF GEOPHYSICAL RESEARCH, 115,B12421.
Grant, D.B., 1995,“ A dynamic datum for a dynamic cadastre.”, Australian surveyor, 40(4): 22-28.
Grant, D.B., Blick, G.H., Pearse, M.B., Beavan, R.J., and Morgan, P.J., 1999, “ The development and implementation of New Zealand Geodetic Datum 2000.”pp 18-30 in IUGG99 General Assembly : Birmingham UK.
Grant, D., and Blick, G., 1998,“A new geocentric datum for New Zealand.”, NZ Surv , 288: 40-42.
Han, J. Y., Yu, S. W., and B. H. W. van Gelder,2011, “Time-variant reference frame transformations in a deforming area”, AustrSurvey Review, 43(321):282-295
Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson, J. M., and Rocken, C., 2003,“Improvement of the analysis strategy of GEONET.”, Bulletin of the Geographical Survey Institute , 49:11-37.
Hatanaka, Y., Tobita, M., Kuroishi, Y., and Imakiire, T., 2007,“Efficient Maintenance of the Japanese Geodetic Datum 2000 Using Crustal Deformation Models–PatchJGD & Semi-Dynamic Datum.”, Bulletin of the Geographical Survey Institute , 54:49-59.
Herring, T. A., Floyd, M. A., King, R. W., and McClusky, S. C., 2015a, GLOBK Reference Manual, Global Kalman filter VLBI and GPS analysis program. , Cambridge:MIT Press.
Herring, T. A., King, R. W., Floyd, M. A., and McClusky, S. C., 2015b, GAMIT Reference Manual, GPS Analysis at MIT. , Cambridge:MIT Press.
Herring, T.A., King, R.W., and McClusky, S.C., 2010, Introduction to Gamit/Globk ., Cambridge:MIT Press.
Jordan, A., Denys, P., and Blick, G., 2007,“Implementing localised deformation models into a semi-dynamic datum.”, pp. 631-637 in Dynamic Planet., edited by Paul T., Berlin:Springer.
McCaffrey, R., 1995, DEFNODE users’ guide. , NewYork:Rensselaer Polytechnic Institute.
McCaffrey, R., Qamar, A., King, R., Wells, R., Khazaradze, G., Williams, C., Stevens, C., Vollick, J., and Zwick, P., 2007, “Fault locking, block rotation and crustal deformation in the Pacific Northwest.”,Geophysical Journal International , 169(3):1315-1340.
McCarthy, D., and Petit, G., 2004, IERS conventions (2003): DTIC Document.
Morgan, J.G., 1987, “The north American datum of 1983.”,The Leading Edge, 6(1):27-33.
Murakami, M., and Ogi, S., 1999, “Realization of the Japanese Geodetic Datum 2000 (JGD2000).”,Bull. Geogr. Surv. Inst., Vol. 45:1-10.
Nur, A., and Mavko, G., 1974,“Postseismic viscoelastic rebound.”,Science, 183(4121):204-206.
Okada, Y., 1985,“Surface deformation due to shear and tensile faults in a half-space.”, Bulletin of the seismological society of America, 75(4):1135-1154.
Pearse, M. B., 1998, “A modern geodetic reference system for New Zealand”, UNISURV S ,(Vol. 52).
Pearson, C., McCaffrey, R., Elliott, J. L., & Snay, R., 2009, “HTDP 3.0: Software for coping with the coordinate changes associated with crustal motion. ”, Journal of Surveying Engineering , 136(2): 80-90.
Pearson, C., and Snay, R., 2013, “Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. ” ,GPS solutions, 17(1):1-15.
Petit, G., and Luzum, B., 2010, IERS conventions (2010): DTIC Document.
Savage, J.C., 1980, “ Dislocations in seismology. ”, Dislocations in solids, 3: 251-339.
Schaffrin, B., and Bock, Y., 1988, “A unified scheme for processing GPS dual-band phase observations. ”, Bulletin Geodesique, 62(2): 142-160.
Schwarz, C. R., and Wade, E. B., 1990, “The North American datum of 1983: Project methodology and execution. ”, Journal of Geodesy, 64(1):28-62.
Sillard, P., and Boucher, C., 2001, “A review of algebraic constraints in terrestrial reference frame datum definition. ”,Journal of Geodesy, 75(2-3): 63-73.
Snay, R. A., 1999, “ Using the HTDP software to transform spatial coordinates across time and between reference frames. ”, Surveying and Land Information Systems, 59(1):15-25.
Snay, R. A, & Soler, T., 2000, “ Modern terrestrial reference systems, Part 2: The evolution of NAD 83. ”, Professional Surveyor, 20(2): 1-2.
Teng, L. S., 1990, “Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan.”, Tectonophysics, 183(1): 57-76.
Thatcher, W., 1979, “Systematic inversion of geodetic data in central California. ”, Journal of Geophysical Research: Solid Earth, 84(B5): 2283-2295.
Thatcher, W., 1983, “Nonlinear Strain Buildup and the Earthquake Cycle. ” J. geophys. Res, 88: 5893-5902.
Tregoning, P., and Jackson, R., 1999, “The need for dynamic datums.”Geomatics Research Australasia, 87-102.
Tse, S.T., and Rice, J. R., 1986, “ Crustal earthquake instability in relation to the depth variation of frictional slip properties. ”, J. geophys. Res, 91(9): 452-459,472.
Tsuji, H., 2005, “Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI. ”,Bulletin of the Geographical Survey Institute, 52.
Walcott, R.I., 1984, “An introduction to the recent crustal movements of New Zealand. ”, Royal Society of New Zealand
Yu, S.B., Chen, H.Y. , and Kuo, L.C., 1997, “Velocity field of GPS stations in the Taiwan area. ” Tectonophysics , 274: 41-59.
Yu, S.B., and Kuo, L.C., 2001, “Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. ” Tectonophysics, 333: 199-217.

三、 網頁參考文獻

IERS. (2016). International Earth Rotation and Reference Systems Service. Retrieved December 10,2016 from IERS on the World Wide Web: https://www.iers.org/IERS/EN/Home/home_node.html
zh_TW