學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 次微米陣列鎳鐵圓盤渦旋核心震盪所形成之微波控制頻率可調的自旋波源
Frequency modulated spin waves generator via oscillating vortex cores in sub-micron NiFe disk array excited by electro-magnetic microwave
作者 蔡禮在
Tsai, Li-Zai
貢獻者 李尚凡
Lee, Shang-Fan
蔡禮在
Tsai, Li-Zai
關鍵詞 自旋波
自旋波源
Spin waves
Spin waves generator
日期 2017
上傳時間 28-八月-2017 11:42:18 (UTC+8)
摘要 我們在實驗中實現以高頻磁場激發之自旋波發射源,此發射源不需外加直流磁場即可給出4GHz~13GHz頻率之自旋波。
      使用自旋波為訊息載體的元件只有自旋角動量傳遞而沒有電荷流動,可以從根本上解決歐姆熱耗散問題,但在近期研究中自旋波的產生往往只能在FMR下伴隨產生,或因為波源的形狀而限制了自旋波頻率,然而在我們的實驗裡以共面波導產生垂直樣品面的高頻磁場,震盪鎳鐵合金(Permalloy﹐Ni81Fe19)線上之圓盤型結構。因強交換耦合作用與形狀異向性,圓盤型結構的鎳鐵合金會形成磁渦漩態(magnetic vortex),且渦漩態中心會形成一塊垂直方向磁區,而此一磁區可以看作為點波源,此點波源即可解決頻率限制問題,且在這結構下不需直流外加場即可穩定存在,在高頻磁場震盪下即會傳播出自旋波。
      由布里淵散射儀(Brillouin light scattering, BLS)量測中,我們觀察到此自旋波由圓盤向外發射,且可以由改變導入共面波導微波的頻率來調控自旋波的頻率,電性量測中證實此自旋波在特定磁場下magnetic vortex會有不同的本徵模式(eigen mode)震盪。
The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to promising applications as information carrier and for signal processing. However, a major challenge for this issue is the requirement to excite propagating spin waves with tunable GHz frequency in the magnonic circuits. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup and electrical measurement. In addition to the discrete ferromagnetic resonance (FMR) signals above external dc saturation magnetic field, we observed clear signals at zero magnetic field where vortex cores are present.
參考文獻 [1] Bloch, F. Phys. 61, 206-219 (1930).
     [2] Vladislav E. Demidov,Sergei Urazhdin& Sergej O. Demokritov, Nature Mater. 9, 984–988 (2010).
     [3] M. Madami,S. Bonetti,G. Consolo,S. Tacchi,G. Carlotti,G. Gubbiotti,F. B. Mancoff,M. A. Yar & J. Åkerman, Nature Nanotech. 6, 635–638 (2011).
     [4] K. Vogt, F.Y. Fradin, J.E. Pearson, T. Sebastian, S.D. Bader, B. Hillebrands, A. Hoffmann & H. Schultheiss Nature Commun.5, 3727 (2014).
     [5] Haiming Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl & D. Grundler, Nature Commun.4, 2702 (2013).
     [6] Haiming Yu, O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach & D. Grundler, Nature Commun.7, 11255 (2016)
     [7] Ferran Macià, Dirk Backes & Andrew D. Kent,Nature Nanotech. 9, 992–996 (2014).
     [8] Mahdi Jamali, Jae Hyun Kwon, Soo-Man Seo, Kyung-Jin Lee & Hyunsoo Yang,Scientific Reports ,srep03160 (2013)
     [9] K. Wagner ,A. Kákay ,K. Schultheiss ,A. Henschke ,T. Sebastian ,H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
     [10] T. Sebastian, T. Brächer, P. Pirro, A. A. Serga, B. Hillebrands, T. Kubota, H. Naganuma, M. Oogane, and Y. Ando,Phys. Rev. Lett. 110, 067201 (2013)
     [11] A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. V. Grishin, S. E. Sheshukova, and S. A. Nikitov, Appl, Phys. Lett. 109, 042407 (2016)
     [12] T. Sebastian, Y. Ohdaira, T. Kubota, P. Pirro, T. Brächer, K. Vogt, A. A. Serga1, H. Naganuma, M. Oogane, Y. Ando, and B. Hillebrands, Appl. Phys. Lett. 100, 112402 (2012)
     [13] P. Pirro, T. Brächer, A. V. Chumak, B. Lägel, C. Dubs, O. Surzhenko, P. Görnert, B. Leven, and B. Hillebrands, Appl. Phys. Lett. 104, 012402 (2014)
     [14] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kima, Appl. Phys. Lett. 100, 172413 (2012)
     [15] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
     [16] Ki-Suk Lee, Phys. Rev. B 76, 174410(2007)
     [17] Ki-Suk Lee, Konstantin Y. Guslienko, Jun-Young Lee, and Sang-Koog Kim, Journal of Applied Physics 102, 043908 (2007)
     [18] Markus Bolte, Guido Meier, Benjamin Krüger, André Drews, René Eiselt, Lars Bocklage, Stellan Bohlens, Tolek Tyliszczak, Arne Vansteenkiste, Bartel Van Waeyenberge, Kang Wei Chou, Aleksandar Puzic, and Hermann Stoll, Phys. Rev. Lett. 100, 176601(2008)
     [19] Sang-Koog Kima, Youn-Seok Choi, Ki-Suk Lee, Konstantin Y. Guslienko, and Dae-Eun Jeong, Appl. Phys. Lett. 91, 082506 (2007)
     [20] Ming Chen, Mincho A. Tsankov,Jon M. Nash, and Carl E. Patton ,PhysRevB.49.12773(1994)
     [21] L. R. Walker, Phys. Rev. 105, 390 (1957)
     [22] Robert C. O. Handley, “Modern Magnetic Materials–Principles and Applications”, Wiley-Interscience, 1999.
     [23] N. A. Spaldin, “Magnetic Materials-Fundamentals and Device Applications”, Cambridge university press, 2003.
     [24] Tomas Jungwirth, Jörg Wunderlich & Kamil Olejník ,NATURE MATERIALS 11, 382–390 (2012)
     [25] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa & E. Saitoh, Nature 464, 262-266 (2010)
     [26] E. Saitoha, M. Ueda, and H. Miyajima, Appl. Phys. Lett. 88, 182509 (2006)
     [27] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kim, Appl. Phys. Lett. 100, 172413 (2012)
     [28] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
     [29] Ayaka Tsukahara,Yuichiro Ando,Yuta Kitamura,Hiroyuki Emoto,Eiji Shikoh,Michael P. Delmo,Teruya Shinjo,and Masashi Shiraishi, Phys. Rev. B 89, 235317 (2014)
     [30] R. Iguchi,K. Ando,Z. Qiu,T. An, E. Saitoh, and T. Sato,Appl. Phys. Lett. 102, 022406 (2013)
     [31] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian & H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
描述 碩士
國立政治大學
應用物理研究所
104755004
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104755004
資料類型 thesis
dc.contributor.advisor 李尚凡zh_TW
dc.contributor.advisor Lee, Shang-Fanen_US
dc.contributor.author (作者) 蔡禮在zh_TW
dc.contributor.author (作者) Tsai, Li-Zaien_US
dc.creator (作者) 蔡禮在zh_TW
dc.creator (作者) Tsai, Li-Zaien_US
dc.date (日期) 2017en_US
dc.date.accessioned 28-八月-2017 11:42:18 (UTC+8)-
dc.date.available 28-八月-2017 11:42:18 (UTC+8)-
dc.date.issued (上傳時間) 28-八月-2017 11:42:18 (UTC+8)-
dc.identifier (其他 識別碼) G0104755004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/112209-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 104755004zh_TW
dc.description.abstract (摘要) 我們在實驗中實現以高頻磁場激發之自旋波發射源,此發射源不需外加直流磁場即可給出4GHz~13GHz頻率之自旋波。
      使用自旋波為訊息載體的元件只有自旋角動量傳遞而沒有電荷流動,可以從根本上解決歐姆熱耗散問題,但在近期研究中自旋波的產生往往只能在FMR下伴隨產生,或因為波源的形狀而限制了自旋波頻率,然而在我們的實驗裡以共面波導產生垂直樣品面的高頻磁場,震盪鎳鐵合金(Permalloy﹐Ni81Fe19)線上之圓盤型結構。因強交換耦合作用與形狀異向性,圓盤型結構的鎳鐵合金會形成磁渦漩態(magnetic vortex),且渦漩態中心會形成一塊垂直方向磁區,而此一磁區可以看作為點波源,此點波源即可解決頻率限制問題,且在這結構下不需直流外加場即可穩定存在,在高頻磁場震盪下即會傳播出自旋波。
      由布里淵散射儀(Brillouin light scattering, BLS)量測中,我們觀察到此自旋波由圓盤向外發射,且可以由改變導入共面波導微波的頻率來調控自旋波的頻率,電性量測中證實此自旋波在特定磁場下magnetic vortex會有不同的本徵模式(eigen mode)震盪。
zh_TW
dc.description.abstract (摘要) The study of spin waves (SW) excitation in magnetic devices is one of the most important topics in modern magnetism due to promising applications as information carrier and for signal processing. However, a major challenge for this issue is the requirement to excite propagating spin waves with tunable GHz frequency in the magnonic circuits. We experimentally realize a spin-wave generator, capable of frequency modulation, in a magnonic waveguide. The emission of spin waves was produced by the reversal or oscillation of nanoscale magnetic vortex cores in a NiFe disk array. The vortex cores in the disk array were excited by an out of plane radio frequency (rf) magnetic field. The dynamic behaviors of the magnetization of NiFe were studied using a micro-focused Brillouin light scattering spectroscopy (BLS) setup and electrical measurement. In addition to the discrete ferromagnetic resonance (FMR) signals above external dc saturation magnetic field, we observed clear signals at zero magnetic field where vortex cores are present.en_US
dc.description.tableofcontents 第 一 章 緒論 1
     研究動機 1
     第 二 章 背景理論 3
     自旋波(SPIN WAVE) 3
     磁阻(MAGNETORESISTANCE,MR) 7
     常磁阻(ORDINARY MAGNETORESISTANCE,OMR) 7
     異向性磁阻(ANISOTROPIC MAGNETORESISTANCE, AMR) 7
     自旋幫浦效應(SPIN PUMPING EFFECT) 9
     自旋霍爾效應 (SPIN HALL EFFECT,SHE) 10
     逆自旋霍爾效應(INVERSE SPIN HALL EFFECT,ISHE) 12
     第 三 章 文獻探討 14
     第 四 章 樣品製備與儀器 26
     紫外光微影、電子束微影 27
     真空濺鍍系統 29
     布里淵散射儀(BRILLOUIN-LIGHT-SCATTERING,BLS) 31
     四點量測 36
     OOMMF 37
     第 五 章 實驗結果與數據分析 39
     模擬 - 磁性圓盤進入渦漩態(VOERTEX STEAT)。 39
     模擬 - 零磁場下各微波頻率之自旋波(SPIN WAVES)。 43
     實驗 - 零磁場下各微波頻率之自旋波(SPIN WAVES)。 46
     實驗 - 自旋波(SPIN WAVE)強度-位置分析 55
     實驗 - 自旋波(SPIN WAVE)強度-磁場分析 59
     實驗 - 異向性磁阻(AMR)量測分析 63
     實驗 - 逆自旋霍爾效應(ISHE)量測分析 71
     結論 82
     數據總結 82
     參考資料 84
     附錄 87
     鎳鐵靶材與薄膜成分分析 87
     鎳鐵磁性量測 88
     鎳鐵電性量測 94
     零外加磁場下不同微波頻率小區域位置掃圖BLS實驗 96
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104755004en_US
dc.subject (關鍵詞) 自旋波zh_TW
dc.subject (關鍵詞) 自旋波源zh_TW
dc.subject (關鍵詞) Spin wavesen_US
dc.subject (關鍵詞) Spin waves generatoren_US
dc.title (題名) 次微米陣列鎳鐵圓盤渦旋核心震盪所形成之微波控制頻率可調的自旋波源zh_TW
dc.title (題名) Frequency modulated spin waves generator via oscillating vortex cores in sub-micron NiFe disk array excited by electro-magnetic microwaveen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Bloch, F. Phys. 61, 206-219 (1930).
     [2] Vladislav E. Demidov,Sergei Urazhdin& Sergej O. Demokritov, Nature Mater. 9, 984–988 (2010).
     [3] M. Madami,S. Bonetti,G. Consolo,S. Tacchi,G. Carlotti,G. Gubbiotti,F. B. Mancoff,M. A. Yar & J. Åkerman, Nature Nanotech. 6, 635–638 (2011).
     [4] K. Vogt, F.Y. Fradin, J.E. Pearson, T. Sebastian, S.D. Bader, B. Hillebrands, A. Hoffmann & H. Schultheiss Nature Commun.5, 3727 (2014).
     [5] Haiming Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl & D. Grundler, Nature Commun.4, 2702 (2013).
     [6] Haiming Yu, O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach & D. Grundler, Nature Commun.7, 11255 (2016)
     [7] Ferran Macià, Dirk Backes & Andrew D. Kent,Nature Nanotech. 9, 992–996 (2014).
     [8] Mahdi Jamali, Jae Hyun Kwon, Soo-Man Seo, Kyung-Jin Lee & Hyunsoo Yang,Scientific Reports ,srep03160 (2013)
     [9] K. Wagner ,A. Kákay ,K. Schultheiss ,A. Henschke ,T. Sebastian ,H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
     [10] T. Sebastian, T. Brächer, P. Pirro, A. A. Serga, B. Hillebrands, T. Kubota, H. Naganuma, M. Oogane, and Y. Ando,Phys. Rev. Lett. 110, 067201 (2013)
     [11] A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. V. Grishin, S. E. Sheshukova, and S. A. Nikitov, Appl, Phys. Lett. 109, 042407 (2016)
     [12] T. Sebastian, Y. Ohdaira, T. Kubota, P. Pirro, T. Brächer, K. Vogt, A. A. Serga1, H. Naganuma, M. Oogane, Y. Ando, and B. Hillebrands, Appl. Phys. Lett. 100, 112402 (2012)
     [13] P. Pirro, T. Brächer, A. V. Chumak, B. Lägel, C. Dubs, O. Surzhenko, P. Görnert, B. Leven, and B. Hillebrands, Appl. Phys. Lett. 104, 012402 (2014)
     [14] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kima, Appl. Phys. Lett. 100, 172413 (2012)
     [15] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
     [16] Ki-Suk Lee, Phys. Rev. B 76, 174410(2007)
     [17] Ki-Suk Lee, Konstantin Y. Guslienko, Jun-Young Lee, and Sang-Koog Kim, Journal of Applied Physics 102, 043908 (2007)
     [18] Markus Bolte, Guido Meier, Benjamin Krüger, André Drews, René Eiselt, Lars Bocklage, Stellan Bohlens, Tolek Tyliszczak, Arne Vansteenkiste, Bartel Van Waeyenberge, Kang Wei Chou, Aleksandar Puzic, and Hermann Stoll, Phys. Rev. Lett. 100, 176601(2008)
     [19] Sang-Koog Kima, Youn-Seok Choi, Ki-Suk Lee, Konstantin Y. Guslienko, and Dae-Eun Jeong, Appl. Phys. Lett. 91, 082506 (2007)
     [20] Ming Chen, Mincho A. Tsankov,Jon M. Nash, and Carl E. Patton ,PhysRevB.49.12773(1994)
     [21] L. R. Walker, Phys. Rev. 105, 390 (1957)
     [22] Robert C. O. Handley, “Modern Magnetic Materials–Principles and Applications”, Wiley-Interscience, 1999.
     [23] N. A. Spaldin, “Magnetic Materials-Fundamentals and Device Applications”, Cambridge university press, 2003.
     [24] Tomas Jungwirth, Jörg Wunderlich & Kamil Olejník ,NATURE MATERIALS 11, 382–390 (2012)
     [25] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa & E. Saitoh, Nature 464, 262-266 (2010)
     [26] E. Saitoha, M. Ueda, and H. Miyajima, Appl. Phys. Lett. 88, 182509 (2006)
     [27] Myoung-Woo Yoo, Jehyun Lee, and Sang-Koog Kim, Appl. Phys. Lett. 100, 172413 (2012)
     [28] Sangkook Choi, Ki-Suk Lee, Konstantin Yu. Guslienko, and Sang-Koog Kim, Phys. Rev. Lett. 98, 087205 (2007)
     [29] Ayaka Tsukahara,Yuichiro Ando,Yuta Kitamura,Hiroyuki Emoto,Eiji Shikoh,Michael P. Delmo,Teruya Shinjo,and Masashi Shiraishi, Phys. Rev. B 89, 235317 (2014)
     [30] R. Iguchi,K. Ando,Z. Qiu,T. An, E. Saitoh, and T. Sato,Appl. Phys. Lett. 102, 022406 (2013)
     [31] K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian & H. Schultheiss, Nature Nanotechnology 11, 432–436 (2016)
zh_TW