學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 參數式一體化之可動關節模型的生成- 以FDM 3D列印為例
Generation of Parametric Non-Assembly Joint Model: A Case Study for FDM 3D Printers
作者 陳科豫
Chen, Ko Yu
貢獻者 李蔡彥<br>紀明德
Li, Tsai Yen<br>Chi, Ming Te
陳科豫
Chen, Ko Yu
關鍵詞 3D列印
關節
一體化成型
3D printing
Joint
Non-Assembly
日期 2017
上傳時間 13-九月-2017 14:48:02 (UTC+8)
摘要 3D列印的普及讓民眾可利用簡易的建模軟體建立3D模型,但是如何建立可動模型對一般使用者而言卻是一道難題,因為必須考驗建模者對於模型設計與結構的熟悉程度,以及受到目前3D印表機的可印程度等因素限制。目前市面上的3D列印成型技術,以FDM最為普遍,優點是便宜、無毒等,而缺點則為精細度低及需印出支撐材,與其他3D列印技術相比限制較多,且失敗率相對較高。本論文的目標主要是將3D靜態(不可動)的肢體動物模型,以FDM印表機為輸出目標,產生出一體化關節可動模型。根據使用者輸入的模型與骨架,本系統會自動找出關節位置,利用關節點與模型頂點的距離計算各部位關節的半徑大小,並利用外積與旋轉矩陣將可動關節與肢體方向對齊,並調整模型至可動關節可嵌入的大小。使用者可藉由本系統所提供的直覺式操作介面,進行參數化調整,以印出不需組裝之可動模型,我們邀請了10位受試者,透過系統操作教學及任務,讓受試者學習如何使用此系統,並透過問卷的方式探討系統的優缺點。問卷的評分方式是採5分量表,從實驗結果顯示,系統整體有用性平均分數為4.5分,表示本系統能有效的幫助使用者建立可動關節模型;而易用性的平均分數是3.9分,代表本研究在介面設計上雖非重點,但仍有改進的空間;易學性方面的平均分數為4.5 分,表示本系統的操作對使用者是容易學習的。整體而言,實驗結果顯示,本研究所建立的可動關節模型系統已達到輔助使用者建立可動模型的目標,並證實了本研究的發展價值。
The popularity of 3D printing has allowed people to design 3D models through common 3D modeling software. However, it is still difficult for a regular user to build a model with movable joints because most users are not familiar with mechanical design and it is a great challenge to design such a model that is printable with current 3D printing technology. FDM is the most popular type with the advantages of being cheap. However, its disadvantage is low precision, which make its failure rate higher than others. In this thesis, we aim to design a system that can take a static articulated model and convert it into a non-assemble model with movable joints that is printable on a FDM 3D printer. Our system can automatically find the positions of the joints according to the input mesh and skeleton and compute the radius of the maximal enclosing circle for each joint model. After aligning the joint model with the limb, the system can automatically adjust the size of the whole model such that the joint model can be embedded in the body model. A user can also tune system parameters through an intuitive interface to determine the orientation and limits of each joint. In order to evaluate our system, we invited ten persons to test user our system by completing assigned tasks and filling a usability survey. The survey is a questionnaire consisting of typical five-point Likert-scale items. The survey reveals that the usefulness of our system is 4.5, which means that our system can effectively help the users construct movable joint models. The score of ease-of-use is 3.9, which means that our user interface still have room for improvement although it is the current focus of our system. The score of ease-of-learning is 4.5, which means that our system is easy for the users to learn. In short, from the experimental results, we believe that our system has achieved the goal of providing a 3D modeling system that can assist users in building non-assemble moveable joint models that are printable on FDM 3D printers.
參考文獻 參考文獻
[1] I. Baran and J. Popović, "Automatic rigging and animation of 3d characters," in ACM Transactions on Graphics (TOG), vol. 26, pp. 72, 2007.
[2] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, "Skeleton extraction by mesh contraction," ACM Transactions on Graphics (TOG), vol. 27, pp. 44, 2008.
[3] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, X. Liu, "Cost-effective printing of 3D objects with skin-frame structures," ACM Transactions on Graphics (TOG), vol. 32, pp. 177, 2013.
[4] Y. Zhou, S. Sueda, W. Matusik, and A. Shamir, "Boxelization: folding 3D objects into boxes," ACM Transactions on Graphics (TOG), vol. 33, pp. 71, 2014.
[5] S. Mueller, T. Mohr, K. Guenther, J. Frohnhofen, and P. Baudisch, "faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks," in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, pp. 3827-3834, 2014.
[6] M. Shugrina, A. Shamir, and W. Matusik, "Fab forms: Customizable objects for fabrication with validity and geometry caching," ACM Transactions on Graphics (TOG), vol. 34, pp. 100, 2015.
[7] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun, "Probabilistic reasoning for assembly-based 3D modeling," ACM Transactions on Graphics (TOG), vol. 30, pp. 35, 2011.
[8] M. Bächer, B. Bickel, D. L. James, and H. Pfister, "Fabricating articulated characters from skinned meshes," ACM Transactions on Graphics(TOG), vol. 31, pp. 47, 2012.
[9] J. Calì, D. A. Calian, C. Amati, R. Kleinberger, A. Steed, J. Kautz, et al., "3D-printing of non-assembly, articulated models," ACM Transactions on Graphics (TOG), vol. 31, pp. 130, 2012.
[10] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, "Microstructures to control elasticity in 3D printing," ACM Transactions on Graphics (TOG), vol. 34, pp. 136, 2015.
[11] T. Sun and C. Zheng, "Computational design of twisty joints and puzzles," ACM Transactions on Graphics(TOG), vol. 34, pp 101, 2015.
[12] S. Goddard, S. Kumar, And J. Prins, "Connected Components Algorithms For Mesh-Connected Parallel Computers," 1996.
[13] libigl Library Availabe:
http://libigl.github.io/libigl/
[14] Felix Klee (Oct 18, 2011). Robot Hand. Retrieved from
https://www.thingiverse.com/thing:12660
[15] CSG Library Available:
https://github.com/gilbo/cork
[16] SLA 3D printer Available:
https://en.wikipedia.org/wiki/Stereolithography
[17] SLS 3D printer Available:
https://en.wikipedia.org/wiki/Selective_laser_sintering
[18] FDM 3D printer Available:
https://en.wikipedia.org/wiki/Fused_deposition_modeling
[19] A. M. Lund, "Measuring Usability with the USE Questionnaire12," Usability Interface, vol. 8, pp. 3-6, 2001.
[20] UP BOX Available:
https://www.up3d.com/?r=up
描述 碩士
國立政治大學
資訊科學學系
103753013
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103753013
資料類型 thesis
dc.contributor.advisor 李蔡彥<br>紀明德zh_TW
dc.contributor.advisor Li, Tsai Yen<br>Chi, Ming Teen_US
dc.contributor.author (作者) 陳科豫zh_TW
dc.contributor.author (作者) Chen, Ko Yuen_US
dc.creator (作者) 陳科豫zh_TW
dc.creator (作者) Chen, Ko Yuen_US
dc.date (日期) 2017en_US
dc.date.accessioned 13-九月-2017 14:48:02 (UTC+8)-
dc.date.available 13-九月-2017 14:48:02 (UTC+8)-
dc.date.issued (上傳時間) 13-九月-2017 14:48:02 (UTC+8)-
dc.identifier (其他 識別碼) G0103753013en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/112678-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 103753013zh_TW
dc.description.abstract (摘要) 3D列印的普及讓民眾可利用簡易的建模軟體建立3D模型,但是如何建立可動模型對一般使用者而言卻是一道難題,因為必須考驗建模者對於模型設計與結構的熟悉程度,以及受到目前3D印表機的可印程度等因素限制。目前市面上的3D列印成型技術,以FDM最為普遍,優點是便宜、無毒等,而缺點則為精細度低及需印出支撐材,與其他3D列印技術相比限制較多,且失敗率相對較高。本論文的目標主要是將3D靜態(不可動)的肢體動物模型,以FDM印表機為輸出目標,產生出一體化關節可動模型。根據使用者輸入的模型與骨架,本系統會自動找出關節位置,利用關節點與模型頂點的距離計算各部位關節的半徑大小,並利用外積與旋轉矩陣將可動關節與肢體方向對齊,並調整模型至可動關節可嵌入的大小。使用者可藉由本系統所提供的直覺式操作介面,進行參數化調整,以印出不需組裝之可動模型,我們邀請了10位受試者,透過系統操作教學及任務,讓受試者學習如何使用此系統,並透過問卷的方式探討系統的優缺點。問卷的評分方式是採5分量表,從實驗結果顯示,系統整體有用性平均分數為4.5分,表示本系統能有效的幫助使用者建立可動關節模型;而易用性的平均分數是3.9分,代表本研究在介面設計上雖非重點,但仍有改進的空間;易學性方面的平均分數為4.5 分,表示本系統的操作對使用者是容易學習的。整體而言,實驗結果顯示,本研究所建立的可動關節模型系統已達到輔助使用者建立可動模型的目標,並證實了本研究的發展價值。zh_TW
dc.description.abstract (摘要) The popularity of 3D printing has allowed people to design 3D models through common 3D modeling software. However, it is still difficult for a regular user to build a model with movable joints because most users are not familiar with mechanical design and it is a great challenge to design such a model that is printable with current 3D printing technology. FDM is the most popular type with the advantages of being cheap. However, its disadvantage is low precision, which make its failure rate higher than others. In this thesis, we aim to design a system that can take a static articulated model and convert it into a non-assemble model with movable joints that is printable on a FDM 3D printer. Our system can automatically find the positions of the joints according to the input mesh and skeleton and compute the radius of the maximal enclosing circle for each joint model. After aligning the joint model with the limb, the system can automatically adjust the size of the whole model such that the joint model can be embedded in the body model. A user can also tune system parameters through an intuitive interface to determine the orientation and limits of each joint. In order to evaluate our system, we invited ten persons to test user our system by completing assigned tasks and filling a usability survey. The survey is a questionnaire consisting of typical five-point Likert-scale items. The survey reveals that the usefulness of our system is 4.5, which means that our system can effectively help the users construct movable joint models. The score of ease-of-use is 3.9, which means that our user interface still have room for improvement although it is the current focus of our system. The score of ease-of-learning is 4.5, which means that our system is easy for the users to learn. In short, from the experimental results, we believe that our system has achieved the goal of providing a 3D modeling system that can assist users in building non-assemble moveable joint models that are printable on FDM 3D printers.en_US
dc.description.tableofcontents 第一章 緒論 1
1.1 研究動機與目的 1
1.2 問題描述 2
1.3 3D列印成型技術 3
1.3.1 SLA列印成型技術 3
1.3.2 SLS列印成型技術 4
1.3.3 FDM列印成型技術 5
1.4 論文貢獻 6
1.5 論文章節架構 6
第二章 相關研究 7
2.1 模型相關技術 7
2.2 關節模型 11
第三章 研究方法與步驟 15
3.1 關節設計平台 15
3.2 關節構造 16
3.3 模型調整 18
3.4 對齊肢體與關節模型 19
3.5 模型切割 22
3.6 參數化關節設定 24
3.6.1 關節間隙參數 24
3.6.2 關節旋轉角度 25
3.7 接縫處切削 26
第四章 實作與實驗結果 28
4.1 實作與實驗環境 28
4.2 間隙參數化列印 28
4.3 旋轉範圍參數化 29
4.4 操作介面 29
4.5 功能介紹 30
4.5.1 輸入模型與骨架 30
4.5.2 關節點標出 31
4.5.3 重新產生輸入模型 32
4.5.4 關節模型安置 33
4.5.5 關節參數化調整 34
4.6 成品模型 37
第五章 評估方法 45
5.1 時間比較 45
5.2 評估目標 46
5.3 評估對象 46
5.4 實驗流程 47
5.4.1 系統任務與操作 48
5.4.2 問卷調查 49
5.5 評估結果分析與討論 50
5.5.1受測者操作時間 50
5.5.2 系統整體評估 51
5.6 實驗限制 53
第六章 結論與未來發展 54
參考文獻 56
zh_TW
dc.format.extent 4377744 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103753013en_US
dc.subject (關鍵詞) 3D列印zh_TW
dc.subject (關鍵詞) 關節zh_TW
dc.subject (關鍵詞) 一體化成型zh_TW
dc.subject (關鍵詞) 3D printingen_US
dc.subject (關鍵詞) Jointen_US
dc.subject (關鍵詞) Non-Assemblyen_US
dc.title (題名) 參數式一體化之可動關節模型的生成- 以FDM 3D列印為例zh_TW
dc.title (題名) Generation of Parametric Non-Assembly Joint Model: A Case Study for FDM 3D Printersen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 參考文獻
[1] I. Baran and J. Popović, "Automatic rigging and animation of 3d characters," in ACM Transactions on Graphics (TOG), vol. 26, pp. 72, 2007.
[2] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, "Skeleton extraction by mesh contraction," ACM Transactions on Graphics (TOG), vol. 27, pp. 44, 2008.
[3] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, X. Liu, "Cost-effective printing of 3D objects with skin-frame structures," ACM Transactions on Graphics (TOG), vol. 32, pp. 177, 2013.
[4] Y. Zhou, S. Sueda, W. Matusik, and A. Shamir, "Boxelization: folding 3D objects into boxes," ACM Transactions on Graphics (TOG), vol. 33, pp. 71, 2014.
[5] S. Mueller, T. Mohr, K. Guenther, J. Frohnhofen, and P. Baudisch, "faBrickation: fast 3D printing of functional objects by integrating construction kit building blocks," in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, pp. 3827-3834, 2014.
[6] M. Shugrina, A. Shamir, and W. Matusik, "Fab forms: Customizable objects for fabrication with validity and geometry caching," ACM Transactions on Graphics (TOG), vol. 34, pp. 100, 2015.
[7] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun, "Probabilistic reasoning for assembly-based 3D modeling," ACM Transactions on Graphics (TOG), vol. 30, pp. 35, 2011.
[8] M. Bächer, B. Bickel, D. L. James, and H. Pfister, "Fabricating articulated characters from skinned meshes," ACM Transactions on Graphics(TOG), vol. 31, pp. 47, 2012.
[9] J. Calì, D. A. Calian, C. Amati, R. Kleinberger, A. Steed, J. Kautz, et al., "3D-printing of non-assembly, articulated models," ACM Transactions on Graphics (TOG), vol. 31, pp. 130, 2012.
[10] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross, "Microstructures to control elasticity in 3D printing," ACM Transactions on Graphics (TOG), vol. 34, pp. 136, 2015.
[11] T. Sun and C. Zheng, "Computational design of twisty joints and puzzles," ACM Transactions on Graphics(TOG), vol. 34, pp 101, 2015.
[12] S. Goddard, S. Kumar, And J. Prins, "Connected Components Algorithms For Mesh-Connected Parallel Computers," 1996.
[13] libigl Library Availabe:
http://libigl.github.io/libigl/
[14] Felix Klee (Oct 18, 2011). Robot Hand. Retrieved from
https://www.thingiverse.com/thing:12660
[15] CSG Library Available:
https://github.com/gilbo/cork
[16] SLA 3D printer Available:
https://en.wikipedia.org/wiki/Stereolithography
[17] SLS 3D printer Available:
https://en.wikipedia.org/wiki/Selective_laser_sintering
[18] FDM 3D printer Available:
https://en.wikipedia.org/wiki/Fused_deposition_modeling
[19] A. M. Lund, "Measuring Usability with the USE Questionnaire12," Usability Interface, vol. 8, pp. 3-6, 2001.
[20] UP BOX Available:
https://www.up3d.com/?r=up
zh_TW