學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Gene set analysis using sufficient dimension reduction
作者 薛慧敏
Hsueh, Huey-Miin
Tsai, Chen-An
貢獻者 統計系
關鍵詞 Bins; Error analysis; Genes; Biological pathways; Co-expression; Microarray data sets; Non linear; Number of methods; Real data analysis; Simulation studies; Sufficient dimension reduction; Gene expression; protein p53; TP53 protein, human; African American; biology; computer simulation; DNA microarray; ethnology; gene expression profiling; gene regulatory network; genetics; genotype; human; male; phenotype; procedures; prostate tumor; African Americans; Computational Biology; Computer Simulation; Gene Expression Profiling; Gene Regulatory Networks; Genotype; Humans; Male; Oligonucleotide Array Sequence Analysis; Phenotype; Prostatic Neoplasms; Tumor Suppressor Protein p53
日期 2016-02
上傳時間 15-九月-2017 16:09:00 (UTC+8)
摘要 Background: Gene set analysis (GSA) aims to evaluate the association between the expression of biological pathways, or a priori defined gene sets, and a particular phenotype. Numerous GSA methods have been proposed to assess the enrichment of sets of genes. However, most methods are developed with respect to a specific alternative scenario, such as a differential mean pattern or a differential coexpression. Moreover, a very limited number of methods can handle either binary, categorical, or continuous phenotypes. In this paper, we develop two novel GSA tests, called SDRs, based on the sufficient dimension reduction technique, which aims to capture sufficient information about the relationship between genes and the phenotype. The advantages of our proposed methods are that they allow for categorical and continuous phenotypes, and they are also able to identify a variety of enriched gene sets. Results: Through simulation studies, we compared the type I error and power of SDRs with existing GSA methods for binary, triple, and continuous phenotypes. We found that SDR methods adequately control the type I error rate at the pre-specified nominal level, and they have a satisfactory power to detect gene sets with differential coexpression and to test non-linear associations between gene sets and a continuous phenotype. In addition, the SDR methods were compared with seven widely-used GSA methods using two real microarray datasets for illustration. Conclusions: We concluded that the SDR methods outperform the others because of their flexibility with regard to handling different kinds of phenotypes and their power to detect a wide range of alternative scenarios. Our real data analysis highlights the differences between GSA methods for detecting enriched gene sets.
關聯 BMC Bioinformatics, 17, 74
資料類型 article
DOI http://dx.doi.org/10.1186/s12859-016-0928-6
dc.contributor 統計系zh_TW
dc.creator (作者) 薛慧敏zh_TW
dc.creator (作者) Hsueh, Huey-Miinen_US
dc.creator (作者) Tsai, Chen-Anen_US
dc.date (日期) 2016-02
dc.date.accessioned 15-九月-2017 16:09:00 (UTC+8)-
dc.date.available 15-九月-2017 16:09:00 (UTC+8)-
dc.date.issued (上傳時間) 15-九月-2017 16:09:00 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/113051-
dc.description.abstract (摘要) Background: Gene set analysis (GSA) aims to evaluate the association between the expression of biological pathways, or a priori defined gene sets, and a particular phenotype. Numerous GSA methods have been proposed to assess the enrichment of sets of genes. However, most methods are developed with respect to a specific alternative scenario, such as a differential mean pattern or a differential coexpression. Moreover, a very limited number of methods can handle either binary, categorical, or continuous phenotypes. In this paper, we develop two novel GSA tests, called SDRs, based on the sufficient dimension reduction technique, which aims to capture sufficient information about the relationship between genes and the phenotype. The advantages of our proposed methods are that they allow for categorical and continuous phenotypes, and they are also able to identify a variety of enriched gene sets. Results: Through simulation studies, we compared the type I error and power of SDRs with existing GSA methods for binary, triple, and continuous phenotypes. We found that SDR methods adequately control the type I error rate at the pre-specified nominal level, and they have a satisfactory power to detect gene sets with differential coexpression and to test non-linear associations between gene sets and a continuous phenotype. In addition, the SDR methods were compared with seven widely-used GSA methods using two real microarray datasets for illustration. Conclusions: We concluded that the SDR methods outperform the others because of their flexibility with regard to handling different kinds of phenotypes and their power to detect a wide range of alternative scenarios. Our real data analysis highlights the differences between GSA methods for detecting enriched gene sets.en_US
dc.format.extent 1577528 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) BMC Bioinformatics, 17, 74en_US
dc.subject (關鍵詞) Bins; Error analysis; Genes; Biological pathways; Co-expression; Microarray data sets; Non linear; Number of methods; Real data analysis; Simulation studies; Sufficient dimension reduction; Gene expression; protein p53; TP53 protein, human; African American; biology; computer simulation; DNA microarray; ethnology; gene expression profiling; gene regulatory network; genetics; genotype; human; male; phenotype; procedures; prostate tumor; African Americans; Computational Biology; Computer Simulation; Gene Expression Profiling; Gene Regulatory Networks; Genotype; Humans; Male; Oligonucleotide Array Sequence Analysis; Phenotype; Prostatic Neoplasms; Tumor Suppressor Protein p53en_US
dc.title (題名) Gene set analysis using sufficient dimension reductionen_US
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1186/s12859-016-0928-6
dc.doi.uri (DOI) http://dx.doi.org/10.1186/s12859-016-0928-6