學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 基於資料科學方法之巨量蛋白質功能預測
Applying Data Science to High-throughput Protein Function Prediction作者 劉義瑋
Liu, Yi-Wei貢獻者 廖文宏
Liao, Wen-Hung
劉義瑋
Liu, Yi-Wei關鍵詞 蛋白質功能預測
機器學習
Protein function prediction
Machine learning日期 2017 上傳時間 2-十月-2017 10:16:27 (UTC+8) 摘要 自人體基因組計畫與次世代定序的完成後,生物資料呈現爆炸性的成長,其中蛋白質序列也是大量發現的基因產物之一,然而蛋白質的功能檢測與標記極其耗時,因此存在大量已知序列卻不知其功能的蛋白質,在實驗前透過電腦先預測可能之功能,能夠幫助生物學家排定不同的蛋白質功能實驗順序,因而加快蛋白質功能標注的速度。基因本體論(GO)是一個被廣泛使用描述基因產物功能與性質的分類方法,分為生物途徑、細胞組件、分子功能三個分支,每個分支皆為一個由多個GO組成的階層樹。蛋白質功能預測為透過蛋白質序列預測該蛋白質所擁有的GO,因此可以視為一個多標籤的分類機器學習問題。我們提出一個基於序列同源性的機器學習預測框架,同時能夠結合蛋白質家族的資訊,並設計多種不同的投票方法解決多標籤的預測問題。
Biological data has grown explosively with the accomplishment of Human Genome Project and Next-generation sequencing. Annotating protein function with wet lab experiment is time-consuming, so many proteins’ functions are still unknown. Fortunately, computational function prediction can help wet lab formulate biological hypotheses and prioritize experiments. Gene Ontology (GO) is the framework for unifying the representation of gene function and classifying these functions into three domains namely, Biological Process Ontology, Cellular Component Ontology, and Molecular Function Ontology. Each domain is a hierarchical tree composed of labels known as GO terms. Protein function prediction can be considered as a multiple label classification problem, i.e., given a protein sequence, predict its GO terms. We proposed a machine learning framework to predict protein function based on its homology sequence structure, which is believed to contain protein family information and designed various voting mechanisms to resolve the multiple label prediction problem.參考文獻 [1] Christophe Dessimoz and Nives Škunca. The Gene Ontology Handbook. Springer, 2016.[2] Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, Tobias Wittkop,Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-Hur, et al.A large-scale evaluation of computational protein function prediction. Nature methods,10(3):221–227, 2013.[3] Yuxiang Jiang, Tal Ronnen Oron, Wyatt T Clark, Asma R Bankapur, Daniel D’Andrea,Rosalba Lepore, Christopher S Funk, Indika Kahanda, Karin M Verspoor, Asa Ben-Hur,et al. An expanded evaluation of protein function prediction methods shows an improvementin accuracy. Genome biology, 17(1):184, 2016.[4] Jia-Ming Chang, Emily Chia-Yu Su, Allan Lo, Hua-Sheng Chiu, Ting-Yi Sung, and Wen-Lian Hsu. Psldoc: Protein subcellular localization prediction based on gapped-dipeptidesand probabilistic latent semantic analysis. Proteins: Structure, Function, and Bioinformatics,72(2):693–710, 2008.[5] Jia-Ming Chang, Jean-Francois Taly, Ionas Erb, Ting-Yi Sung, Wen-Lian Hsu, Chuan YiTang, Cedric Notredame, and Emily Chia-Yu Su. Efficient and interpretable prediction ofprotein functional classes by correspondence analysis and compact set relations. PloS one,8(10):e75542, 2013.[6] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.[7] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, ZhengZhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generationof protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.[8] Ian Sillitoe, Tony E Lewis, Alison Cuff, Sayoni Das, Paul Ashford, Natalie L Dawson,Nicholas Furnham, Roman A Laskowski, David Lee, Jonathan G Lees, et al. Cath: comprehensivestructural and functional annotations for genome sequences. Nucleic acidsresearch, 43(D1):D376–D381, 2015.[9] Christine A Orengo, AD Michie, S Jones, David T Jones, MB Swindells, and Janet MThornton. Cath–a hierarchic classification of protein domain structures. Structure, 5(8):1093–1109, 1997.[10] Sayoni Das, David Lee, Ian Sillitoe, Natalie L Dawson, Jonathan G Lees, and Christine AOrengo. Functional classification of cath superfamilies: a domain-based approach forprotein function annotation. Bioinformatics, 31(21):3460–3467, 2015.[11] Sayoni Das, Ian Sillitoe, David Lee, Jonathan G Lees, Natalie L Dawson, John Ward, andChristine A Orengo. Cath funfhmmer web server: protein functional annotations usingfunctional family assignments. Nucleic acids research, 43(W1):W148–W153, 2015.[12] Chin-Sheng Yu, Chih-Jen Lin, and Jenn-Kang Hwang. Predicting subcellular localizationof proteins for gram-negative bacteria by support vector machines based on n-peptidecompositions. Protein Science, 13(5):1402–1406, 2004.[13] Keun-Joon Park and Minoru Kanehisa. Prediction of protein subcellular locations by supportvector machines using compositions of amino acids and amino acid pairs. Bioinformatics,19(13):1656–1663, 2003.[14] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machinelearning, 42(1-2):177–196, 2001.[15] Yuxiang Jiang. Cafa2: Matlab evaluation codes for the 2nd cafa experiment. https://github.com/yuxjiang/CAFA2, 2016.[16] Robert C Edgar. Search and clustering orders of magnitude faster than blast. Bioinformatics,26(19):2460–2461, 2010. 描述 碩士
國立政治大學
資訊科學學系
104753013資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104753013 資料類型 thesis dc.contributor.advisor 廖文宏 zh_TW dc.contributor.advisor Liao, Wen-Hung en_US dc.contributor.author (作者) 劉義瑋 zh_TW dc.contributor.author (作者) Liu, Yi-Wei en_US dc.creator (作者) 劉義瑋 zh_TW dc.creator (作者) Liu, Yi-Wei en_US dc.date (日期) 2017 en_US dc.date.accessioned 2-十月-2017 10:16:27 (UTC+8) - dc.date.available 2-十月-2017 10:16:27 (UTC+8) - dc.date.issued (上傳時間) 2-十月-2017 10:16:27 (UTC+8) - dc.identifier (其他 識別碼) G0104753013 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/113294 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學學系 zh_TW dc.description (描述) 104753013 zh_TW dc.description.abstract (摘要) 自人體基因組計畫與次世代定序的完成後,生物資料呈現爆炸性的成長,其中蛋白質序列也是大量發現的基因產物之一,然而蛋白質的功能檢測與標記極其耗時,因此存在大量已知序列卻不知其功能的蛋白質,在實驗前透過電腦先預測可能之功能,能夠幫助生物學家排定不同的蛋白質功能實驗順序,因而加快蛋白質功能標注的速度。基因本體論(GO)是一個被廣泛使用描述基因產物功能與性質的分類方法,分為生物途徑、細胞組件、分子功能三個分支,每個分支皆為一個由多個GO組成的階層樹。蛋白質功能預測為透過蛋白質序列預測該蛋白質所擁有的GO,因此可以視為一個多標籤的分類機器學習問題。我們提出一個基於序列同源性的機器學習預測框架,同時能夠結合蛋白質家族的資訊,並設計多種不同的投票方法解決多標籤的預測問題。 zh_TW dc.description.abstract (摘要) Biological data has grown explosively with the accomplishment of Human Genome Project and Next-generation sequencing. Annotating protein function with wet lab experiment is time-consuming, so many proteins’ functions are still unknown. Fortunately, computational function prediction can help wet lab formulate biological hypotheses and prioritize experiments. Gene Ontology (GO) is the framework for unifying the representation of gene function and classifying these functions into three domains namely, Biological Process Ontology, Cellular Component Ontology, and Molecular Function Ontology. Each domain is a hierarchical tree composed of labels known as GO terms. Protein function prediction can be considered as a multiple label classification problem, i.e., given a protein sequence, predict its GO terms. We proposed a machine learning framework to predict protein function based on its homology sequence structure, which is believed to contain protein family information and designed various voting mechanisms to resolve the multiple label prediction problem. en_US dc.description.tableofcontents 1 Introduction 11.1 Background 11.1.1 Proteins 11.1.2 Gene Ontology 21.1.3 Protein function prediction problem 41.1.4 The CAFA challenge 51.2 Objective 61.3 Our contributions 62 Related Work 82.1 Protein function annotation transferred from homologous proteins 82.2 Protein function annotation transferred from protein families 93 Methods 113.1 Feature representation by TFPSSM 113.1.1 Gapped-dipeptide 113.1.2 Position-specific scoring matrix 123.1.3 TFPSSM weighting scheme 133.2 Feature reduction by Principal Component Analysis 133.3 CATH information 143.4 Gene Ontology prediction by K-nearest neighbor algorithm and weighted voting 153.4.1 TFPSSM 1NN 153.4.2 TFPSSM Vote 153.4.2.1 Three branches of TFPSSM to determine K 153.4.2.2 Three voting weights to predict GO terms 163.4.3 TFPSSM CATH 163.4.4 Normalization of weighted voting 163.5 System architecture 184 Evaluation 194.1 Data sets 194.2 Five-fold cross-validation 204.3 Evaluation measures 214.4 Baseline models 224.4.1 Naïve method 224.4.2 BLAST method 234.5 Experiment design 234.5.1 Experiment 1: PCA 234.5.2 Experiment 2: K-nearest neighbors algorithm and weighted voting 234.5.3 Experiment 3: TFPSSM CATH 244.5.4 Experiment 4: Testing 245 Results and Discussion 255.1 Experiment 1: PCA 255.2 Experiment 2: K-nearest neighbors algorithm and weighted voting 275.2.1 Fixed-KNN 275.2.2 Dynamic-KNN 295.2.3 Hybrid-KNN 325.3 Experiment 3: TFPSSM-CATH 355.4 Summary of experiment results 385.4.1 CAFA2-Swiss and CAFA3-Swiss training dataset five-fold validation 385.4.2 CAFA2-Benchmark testing 415.4.3 CAFA3 preliminary results 446 Conclusion and Future Work 45References 46 zh_TW dc.format.extent 4396161 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104753013 en_US dc.subject (關鍵詞) 蛋白質功能預測 zh_TW dc.subject (關鍵詞) 機器學習 zh_TW dc.subject (關鍵詞) Protein function prediction en_US dc.subject (關鍵詞) Machine learning en_US dc.title (題名) 基於資料科學方法之巨量蛋白質功能預測 zh_TW dc.title (題名) Applying Data Science to High-throughput Protein Function Prediction en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] Christophe Dessimoz and Nives Škunca. The Gene Ontology Handbook. Springer, 2016.[2] Predrag Radivojac, Wyatt T Clark, Tal Ronnen Oron, Alexandra M Schnoes, Tobias Wittkop,Artem Sokolov, Kiley Graim, Christopher Funk, Karin Verspoor, Asa Ben-Hur, et al.A large-scale evaluation of computational protein function prediction. Nature methods,10(3):221–227, 2013.[3] Yuxiang Jiang, Tal Ronnen Oron, Wyatt T Clark, Asma R Bankapur, Daniel D’Andrea,Rosalba Lepore, Christopher S Funk, Indika Kahanda, Karin M Verspoor, Asa Ben-Hur,et al. An expanded evaluation of protein function prediction methods shows an improvementin accuracy. Genome biology, 17(1):184, 2016.[4] Jia-Ming Chang, Emily Chia-Yu Su, Allan Lo, Hua-Sheng Chiu, Ting-Yi Sung, and Wen-Lian Hsu. Psldoc: Protein subcellular localization prediction based on gapped-dipeptidesand probabilistic latent semantic analysis. Proteins: Structure, Function, and Bioinformatics,72(2):693–710, 2008.[5] Jia-Ming Chang, Jean-Francois Taly, Ionas Erb, Ting-Yi Sung, Wen-Lian Hsu, Chuan YiTang, Cedric Notredame, and Emily Chia-Yu Su. Efficient and interpretable prediction ofprotein functional classes by correspondence analysis and compact set relations. PloS one,8(10):e75542, 2013.[6] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.[7] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, ZhengZhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generationof protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.[8] Ian Sillitoe, Tony E Lewis, Alison Cuff, Sayoni Das, Paul Ashford, Natalie L Dawson,Nicholas Furnham, Roman A Laskowski, David Lee, Jonathan G Lees, et al. Cath: comprehensivestructural and functional annotations for genome sequences. Nucleic acidsresearch, 43(D1):D376–D381, 2015.[9] Christine A Orengo, AD Michie, S Jones, David T Jones, MB Swindells, and Janet MThornton. Cath–a hierarchic classification of protein domain structures. Structure, 5(8):1093–1109, 1997.[10] Sayoni Das, David Lee, Ian Sillitoe, Natalie L Dawson, Jonathan G Lees, and Christine AOrengo. Functional classification of cath superfamilies: a domain-based approach forprotein function annotation. Bioinformatics, 31(21):3460–3467, 2015.[11] Sayoni Das, Ian Sillitoe, David Lee, Jonathan G Lees, Natalie L Dawson, John Ward, andChristine A Orengo. Cath funfhmmer web server: protein functional annotations usingfunctional family assignments. Nucleic acids research, 43(W1):W148–W153, 2015.[12] Chin-Sheng Yu, Chih-Jen Lin, and Jenn-Kang Hwang. Predicting subcellular localizationof proteins for gram-negative bacteria by support vector machines based on n-peptidecompositions. Protein Science, 13(5):1402–1406, 2004.[13] Keun-Joon Park and Minoru Kanehisa. Prediction of protein subcellular locations by supportvector machines using compositions of amino acids and amino acid pairs. Bioinformatics,19(13):1656–1663, 2003.[14] Thomas Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machinelearning, 42(1-2):177–196, 2001.[15] Yuxiang Jiang. Cafa2: Matlab evaluation codes for the 2nd cafa experiment. https://github.com/yuxjiang/CAFA2, 2016.[16] Robert C Edgar. Search and clustering orders of magnitude faster than blast. Bioinformatics,26(19):2460–2461, 2010. zh_TW