dc.contributor.advisor | 鄭宇庭 | zh_TW |
dc.contributor.author (作者) | 李柏青 | zh_TW |
dc.creator (作者) | 李柏青 | zh_TW |
dc.date (日期) | 2017 | en_US |
dc.date.accessioned | 2-十月-2017 10:22:22 (UTC+8) | - |
dc.date.available | 2-十月-2017 10:22:22 (UTC+8) | - |
dc.date.issued (上傳時間) | 2-十月-2017 10:22:22 (UTC+8) | - |
dc.identifier (其他 識別碼) | G1043630061 | en_US |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/113320 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 企業管理研究所(MBA學位學程) | zh_TW |
dc.description (描述) | 104363006 | zh_TW |
dc.description.abstract (摘要) | 互聯網改變了傳統零售業的生態,人們的行為隨著資訊技術的發展更迭,零售結合電商已是趨勢,電商平台在其中扮演著重要的角色。面對激烈競爭的市場環境,在企業資源有限的情況下,利用用戶之巨量交易資料,透過資料探勘技術發掘出顧客行為並依此分群,進而找出潛藏具價值的關聯規則,協助電商平台進行用戶行銷,輔助電商平台現行單一式銷售的困境,此為本研究想要探討的主題。 本研究利用個案公司全年的銷售紀錄作為分析基礎,運用RFM模型,以最近購買日期、購買頻率、購買金額三項變數,透過資料轉換及權重設定,計算用戶價值,以作為用戶分群之依據。 將上述三項變數進行標準化後,依照資料探勘技術K-means方法將上萬用戶分為「流失客群」、「近期客群」、「次流失客群」、「潛力客群」、「重要發展客群」、「一般客群」等六群用戶群。 最後透過關聯規則Apriori演算法,設定規則篩選準則後,依序找出各群用戶購買產品之行為規則,產出之結果經過領域知識的探討,最終訂立出適用不同用戶集群客製化交叉銷售的行銷方式,以提供個案公司行銷決策之輔助。 | zh_TW |
dc.description.abstract (摘要) | The main focus of this research is to discuss how e-commerce industries can utilize basic information, demographic and transactional data of users by applying data mining technique to find the substantial information. To isolate those of who with hidden or inconspicuous data connections to accomplish the efficiency of product marketing. This study make use of e-commerce transactions information for past whole year of the case study company as samples for analysis. Recency (R), Frequency (F), Monetary (M) are the three variables to be used. After variable adjusted and standardized, the Customer Lifetime Value is evaluated..Using the above three variables as indices for separating users and by applying data mining skill to analyze K-means algorithm, we can apparently segment users into six groups- Leaving Customers, New Customers, Minor Leaving Customers, Potential Customers, vital Customers, Mass Customers.Then by using Association Rules Apriori, we can determine purchase connections of each group. Eventually through filters and domain knowledge, the customization of cross sales is finished, and the findings can provide the upper management functions of the case study company a more efficient direction to form a marketing campaign. | en_US |
dc.description.tableofcontents | 目次 1表目錄 2圖目錄 3第一章 緒論 41.1 研究背景與動機 41.2 研究目的 51.3 研究架構與流程 61.4 研究範圍與研究限制 7第二章 文獻檢閱 82.1 資料採礦之概述 82.2 顧客價值與關聯規則 15第三章 研究方法 173.1 研究假設 173.2 研究架構 183.3 分析資料說明 203.4 操作資料定義與前置處理 223.5 分析方法 27第四章 資料分析與解釋 304.1 樣本描述 304.2 顧客價值與集群分析 334.3 關聯規則分析 38第五章 結論 635.1 結論 635.2 未來研究建議 71參考文獻 72 | zh_TW |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G1043630061 | en_US |
dc.subject (關鍵詞) | 資料探勘 | zh_TW |
dc.subject (關鍵詞) | 關聯分析 | zh_TW |
dc.title (題名) | 應用資料採礦於電子商務平台 銷售商品購買關聯性之研究 | zh_TW |
dc.title (題名) | The application of data mining on the association of sales through the ecommerce platform | en_US |
dc.type (資料類型) | thesis | en_US |
dc.relation.reference (參考文獻) | 一、英文文獻:Frawley, Piatetsky-Shapiro, Matheus (1992) Data Mining with Decision TreesFayyad et al. (1996) Customer Intimacy Analytics : Leveraging Operational Data to Assess Customer Knowledge and Relationships and to Measure Their Business ImpactBerger and Nasr (1998)Customer lifetime value: marketing models and applicationsPhilip Kotler (2003) Marketing Management二、中文文獻:謝邦昌、鄭宇庭與蘇志雄,2009,Data Mining概述以Clementine為例,中華資料採礦協會。鐘永富,2013年,運用資料探勘技術協助行銷策略制定之研究─以家庭清潔用品為例Dimitri Maex,Paul B. Brown,2016,性感小數字:奧美廣告教父教你用數據讓業績一飛沖天翻譯本R语言与统计分析, 作者: 汤银才, ISBN: 9787040250626。 | zh_TW |