學術產出-會議論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 科技英文文章難易度分類之研究
作者 王湘嵐
江憲坤
郭鳳蘭
關鍵詞 全民英檢 可讀性 科技英文
GEPT
readability
technological English
Flesch-Kincaid readability formula
KNN
日期 2006
上傳時間 28-十一月-2017 14:21:59 (UTC+8)
摘要 科技產業的發展關係到國家的全球競爭力,提升科技人才的科技英文閱讀能力將有助於其吸取新知和提升創造力。然而,目前並沒有一個嚴謹的科技英文文章難易度辨別之公式來協助學習者過濾和篩選適合其閱讀之科技英文文章。況且,科技英文文章難易度判別和分類之相關研究極為稀少。因此,本研究分析現今Flesch Reading Ease可讀性公式之優缺點,提出一個延伸其公式並加上全民英檢各等級單字和科技專業詞彙作為特徵值之可讀性公式。研究者以全民英檢全真試題初級、中級和中高級之閱讀測驗試題共59篇作為資料來源,採用KNN演算法來做文章分類,以比較Flesch Reading Ease公式和本研究所提出公式之效能。實驗結果顯示,本研究所提出之難易度預測公式遠勝於Flesch-Kincaid公式之效能。
The development of IT industry is related to a country’s global competition, and enhancing IT talents’ technological English reading ability can thus promote their creativity. Currently, however, there is no reliable formula to judge the readability of technological English to help learners select proper articles to read. Moreover, studies related to readability of technological English articles are extremely rare. Therefore, our study analyzes the advantages and the disadvantages of Flesch-Kincaid readability formula and proposed an extended formula, using GEPT’s vocabulary difficulty levels and technology terminology as the formula’s feature values. The resource of our study comes from 49 GEPT’s beginning, intermediate, and high-intermediate level’s reading comprehension articles. We further classify these articles by KNN algorithm and compare the effectiveness between Flesch-Kincaid formula and our proposed formula. The result indicates that our proposed formula is more effective than the latter in predicting the readability of a technological English article.
關聯 TANET 2006 台灣網際網路研討會論文集
軟體創意開發與應用
資料類型 conference
dc.creator (作者) 王湘嵐zh_TW
dc.creator (作者) 江憲坤zh_TW
dc.creator (作者) 郭鳳蘭zh_TW
dc.date (日期) 2006
dc.date.accessioned 28-十一月-2017 14:21:59 (UTC+8)-
dc.date.available 28-十一月-2017 14:21:59 (UTC+8)-
dc.date.issued (上傳時間) 28-十一月-2017 14:21:59 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/114877-
dc.description.abstract (摘要) 科技產業的發展關係到國家的全球競爭力,提升科技人才的科技英文閱讀能力將有助於其吸取新知和提升創造力。然而,目前並沒有一個嚴謹的科技英文文章難易度辨別之公式來協助學習者過濾和篩選適合其閱讀之科技英文文章。況且,科技英文文章難易度判別和分類之相關研究極為稀少。因此,本研究分析現今Flesch Reading Ease可讀性公式之優缺點,提出一個延伸其公式並加上全民英檢各等級單字和科技專業詞彙作為特徵值之可讀性公式。研究者以全民英檢全真試題初級、中級和中高級之閱讀測驗試題共59篇作為資料來源,採用KNN演算法來做文章分類,以比較Flesch Reading Ease公式和本研究所提出公式之效能。實驗結果顯示,本研究所提出之難易度預測公式遠勝於Flesch-Kincaid公式之效能。zh_TW
dc.description.abstract (摘要) The development of IT industry is related to a country’s global competition, and enhancing IT talents’ technological English reading ability can thus promote their creativity. Currently, however, there is no reliable formula to judge the readability of technological English to help learners select proper articles to read. Moreover, studies related to readability of technological English articles are extremely rare. Therefore, our study analyzes the advantages and the disadvantages of Flesch-Kincaid readability formula and proposed an extended formula, using GEPT’s vocabulary difficulty levels and technology terminology as the formula’s feature values. The resource of our study comes from 49 GEPT’s beginning, intermediate, and high-intermediate level’s reading comprehension articles. We further classify these articles by KNN algorithm and compare the effectiveness between Flesch-Kincaid formula and our proposed formula. The result indicates that our proposed formula is more effective than the latter in predicting the readability of a technological English article.en_US
dc.format.extent 251661 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) TANET 2006 台灣網際網路研討會論文集zh_TW
dc.relation (關聯) 軟體創意開發與應用zh_TW
dc.subject (關鍵詞) 全民英檢 可讀性 科技英文zh_TW
dc.subject (關鍵詞) GEPT
readability
technological English
Flesch-Kincaid readability formula
KNN
en_US
dc.title (題名) 科技英文文章難易度分類之研究zh_TW
dc.type (資料類型) conference