dc.creator (作者) | Wu, Chia-Long | en_US |
dc.creator (作者) | Lou, Der-Chyuan | en_US |
dc.creator (作者) | Chang, Te-Jen | en_US |
dc.date (日期) | 2006 | |
dc.date.accessioned | 18-十二月-2017 17:36:28 (UTC+8) | - |
dc.date.available | 18-十二月-2017 17:36:28 (UTC+8) | - |
dc.date.issued (上傳時間) | 18-十二月-2017 17:36:28 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/115194 | - |
dc.description.abstract (摘要) | 針對RSA 公開金鑰演算法演進而言,正朝向發展出快速、有效的使用面積、以及低功率的蒙哥馬利模乘法器,可應用在安全交易系統中智慧卡的數位簽章與使用者認證作業上。本論文中,我們提出一個有效地可節省模乘法數的演算法,本演算法是在被乘數利用補數方法,乘數利用分割金鑰大小的方法。運由模數運算以及補數方法在蒙哥馬利演算法上,則針對RSA 密碼系統而言,所提出的方法可以有效地解決模指數的運算。我們提出的時間複雜度為k/4 + 1/2乘法量,Lee、Jeong 與Kwon 三位學者所提出的演算法則需要k/2 +1乘法量,其中k 為被乘數與乘數的位元長度。 | |
dc.description.abstract (摘要) | High-speed, area-efficient, and low-power Montgomery modular multipliers for RSA algorithm have been developed for digital signature and user authentication in high-speed network systems and smart cards. In this paper, we present an efficient algorithm for modular multiplication by performing complements on the multiplicand and partitioning the key size of the multiplier. By applying the modular arithmetic and complement technique to the Montgomery algorithm, the proposed algorithm can efficiently evaluate modular exponentiation for RSA cryptosystem. The computational complexity of the proposed algorithm is k/4 + 1/2 multiplications, which is less than k/2 + 1 multiplications in Lee-Jeong-Kwon algorithm, where k is the bit-length of the multiplicand and the multiplier. | |
dc.format.extent | 255197 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.relation (關聯) | TANET 2006 台灣網際網路研討會論文集 | zh_TW |
dc.relation (關聯) | 資通安全、不當資訊防治 | zh_TW |
dc.subject (關鍵詞) | 密碼學 ; 模運算 ; 金鑰分割 ; 公開金鑰 ; 模乘法 ; 密碼系統 | zh_TW |
dc.subject (關鍵詞) | Cryptography ; modular arithmetic ; key partition ; public-key cryptosystem ; modular multiplication | en_US |
dc.title (題名) | Efficient Montgomery ModularMultiplication Algorithm Using Complement and Partition Techniques | en_US |
dc.type (資料類型) | conference | |