學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 應用大數據於杭州市房地產價格模型之建立
The Application of Big Data Analytics on Real Estate Price Model of Hangzhou
作者 郁嘉綾
Yu, Cia-Ling
貢獻者 鄭宇庭<br>郭訓志
Cheng, Yu-Ting<br>Kuo, Hsun-Chih
郁嘉綾
Yu, Cia-Ling
關鍵詞 房地產估價
大數據
神經網絡
混合模型
Appraisal of real estate
Big data
Neural network
Mixed model
日期 2018
上傳時間 1-六月-2018 17:33:57 (UTC+8)
摘要 互聯網的發展與近年來數據平台受到公私部門重視,資訊的取得與流通變得便捷,中國房地產文化目前有別於台灣,尚無實價登錄機制且地域面積廣大,傳統估價模型可能無法直接應用,面對房地產背後眾多的影響因素,本研究將預測建模目標放在泡沫化尚不嚴重且較具有潛力的中國新一線城市杭州市,自新浪二手房網爬取杭州市房地產數據,並自國家統計局取得各地區行政支出數據,作為實證分析資料。結合自動程序爬蟲抓取數據、統計分析與機器學習方法,期望對中國房地產建立一混合非監督式與監督式學習之模型。
在分群結果之後建構模型採用之技術為C5.0、三層CHAID、五層CHAID與Neural Network,挑選出最適合的模型為使用混合模型後的C5.0決策樹方法,達到降低變數維度亦提升或達到相當的預測準確率的雙贏目標,模型中行政地區、面積、總樓層為最頻出現的重要變數。
另外透過集群分析於行政支出的應用,發現2016年度杭州市投入的行政支出集中於余杭區、蕭山區、濱江區,成為賣屋及購屋者的第二項決策標準。
In recent years, with the growth of the Internet and the importance of data platform on public sector and private sector. Getting and sharing information are made easily. The culture of real estate in China is different from Taiwan. For instance, there is no actual house price registration system. Furthermore, traditional estimate model may not be directly applicable to China which has the vast geographical area of the mainland. There are many factors to influence house price model. This study focus on Hangzhou city. Because the burst of real estate bubbles is not serious as first-tier cities and it is one of new first-tier cities in China. The research data were crawler from Sina second-hand housing website and National Bureau of Statistics. By using auto web crawler skill, statistical analysis, and machine learning method to build a real estate model in China, which was combining unsupervised learning method with supervised learning method.
After clustering Hangzhou second-hand housing data, this study used C5.0, three layers Chi-Square Automatic Interaction Detector(CHAID), five layers CHAID, and Neural Network(NN). The study goal are both reducing dimension and getting better forecast accuracy. Choosing clustering- C5.0 model as appropriate house price model to achieve win-win situation after comparing final result. Administrative region, area, and total floor are the top three high frequency influential factors.
Applying Clustering Analysis to administrative expenses data in Hangzhou, the study found that the government resource focus on Yuhang, Xiaoshan, and Binjiang. It can be the second decision-making criterion for house sellers and house buyers.
參考文獻 一、中文文獻
1.呂宜倫,(2016),應用決策樹分析於資料探勘之研究-以預測混凝土抗壓強度為例,高雄應用科技大學工業工程與管理系碩士在職專班論文。
2.杜雪君、黃中華、吳次芳,(2009),房地產稅、地方公共支出對房價的影響:全國及區域層面的面板數據分析,中國土地科學,第23卷第7期學術論著,9-13。
3.沈瑋婷,(2014),集群分析應用於法國紅酒拍賣價格之特性瞭解,政治大學統計學系碩士論文。
4.林建亨,(2008),南科對房地產價格之影響-特徵價格法之應用。成功大學都市計畫研究所碩士論文。
5.林英彥,(2006),不動產估價,文笙書局股份有限公司。
6.林祖嘉、馬毓駿,(2007),特徵方程式大量估計法在台灣不動產市場之應用,住宅學報,第十六卷第二期學術論著,1-22。
7.林逸塵,(2002),類神經網路應用於空氣品質預測之研究,中山大學環境工程研究所碩士論文。
8.紀侑廷,(2014),科技園區周邊住宅房價影響因素之研究-以新竹科學園區為例,中興大學應用經濟所碩士論文。
9.張又仁,(2014),應用協同過濾與決策樹與地點感知餐廳推薦,中國文化大學商學院資訊管理學系碩士論文。
10.張金鶚,(2003),房地產投資與市場分析:理論與實務,華泰出版社。
11.許易民,(2011),近期中國大陸房地產情勢與影響,經濟研究,第11期,449-470。
12.陳京群,(2017),探討台北市人口特性與不動產交易之關聯性,政治大學統計學系碩士論文。
13.陳既翕,(2013),透天住宅特徵屬性對房價之影響分析-以台南市永康區透天住宅為例,崑山科技大學房地產開發與管理研究所碩士論文。
14.陳振亮、謝振環,(2017),經濟學(第五版),東華出版社。
15.陳樹衡、郭子文、棗厥庸,(2007),以決策樹之迴歸樹建構住宅價格模型台灣地區之實證分析,住宅學報,第十六卷第一期學術論著,1-20。
16.曾仁人,(2014),資料採礦在網路消費行為預測模型之應用,政治大學統計學系碩士論文。
17.劉叢欣,(2011),高房價的政治經濟學分析,中國城市經濟,3期,34-35。
18.蔡育政,(2009),影響房地產價格因素之研究:以台中市北屯區、西屯區、南屯區、中區、東區為例,朝陽科技大學財務金融所碩士論文。
19.蔡育展,(2017),機器學習與房地產估價,政治大學資訊管理學系碩士論文。
20.鄭偉安,(2016),都市公園綠地對於房價之影響‒以高雄市區為例,中山大學經濟系研究所碩士論文。
21.盧世勳、劉雨芬,(2012),全球金融危機後中國大陸房市發展-兼論官方之因應措施及其影響,國際金融參考資料,第64輯,27-51。
22.謝文盛,(2000),公共支出、租稅收入與住宅市場之研究,政治大學經濟學系博士論文。
23.謝邦昌、鄭宇庭與蘇志雄,(2017),Data Mining概述: 以Clementine 12.0為例,元華文創。
二、英文文獻
1.Jim, C. Y. & W. Y. Chen (2006). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and Urban Planning, Vol. 78, No. 4, pp.422-434.
2.Kong, F., H. Yin & N. Nakagoshi (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City(China), Landscape and Urban Planning, Vol. 79, No. 3-4, pp. 240-252.
3.Lee, T. S. & I. F. Chen (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, Vol. 28, No. 4, pp. 743-752.
4.Liang, X., H. S. Zhang, J. G. Mao & Y. Chen (2009). Improving option price forecasts with neural networks and support vector regressions. Neurocomputing, Vol. 72, No. 13-15, pp. 3055-3065.
5.Loh, W. Y. & Y. S. Shih (1997). Split selection methods for classification trees. Statistica Sinica, Vol. 7, pp. 815-840.
6.McCulloch, W. S. & W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology, Vol. 5, No. 4, pp. 115-133.
7.Oates, W. E. (1969). The Effects of Property Taxes and Local Public Spending on Property Values: An Empirical Study of Tax Capitalization and the Tiebout Hypothesis. The Journal of Political Economy, Vol. 77, No. 6, pp. 957-971.
8.Pandey, P. & I. Singh (2016). Improving Accuracy using different Data Mining Algorithms, International Journal of Computer Applications, Vol. 150, No. 10, pp. 10-13.
9.Peterson, S. & A. B. Flanagan (2009). Neural network hedonic pricing models in mass real estate appraisal. Journal of Real Estate Research, Vol. 31, No. 2, pp. 147-164.
10.Rosen, S. (1974). Hedonic Price and Implicit Markets: Product Differentiation in Pure Competition, Journal of Political Economics. Vol. 82, No 1, pp. 34-55.
11.Zhang, R., Q. Du, J. Geng, B. Liu & Y. Huang (2015). An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a case study. Habitat International, Vol. 46, pp. 196-205.
描述 碩士
國立政治大學
統計學系
105354007
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105354007
資料類型 thesis
dc.contributor.advisor 鄭宇庭<br>郭訓志zh_TW
dc.contributor.advisor Cheng, Yu-Ting<br>Kuo, Hsun-Chihen_US
dc.contributor.author (作者) 郁嘉綾zh_TW
dc.contributor.author (作者) Yu, Cia-Lingen_US
dc.creator (作者) 郁嘉綾zh_TW
dc.creator (作者) Yu, Cia-Lingen_US
dc.date (日期) 2018en_US
dc.date.accessioned 1-六月-2018 17:33:57 (UTC+8)-
dc.date.available 1-六月-2018 17:33:57 (UTC+8)-
dc.date.issued (上傳時間) 1-六月-2018 17:33:57 (UTC+8)-
dc.identifier (其他 識別碼) G0105354007en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/117440-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 105354007zh_TW
dc.description.abstract (摘要) 互聯網的發展與近年來數據平台受到公私部門重視,資訊的取得與流通變得便捷,中國房地產文化目前有別於台灣,尚無實價登錄機制且地域面積廣大,傳統估價模型可能無法直接應用,面對房地產背後眾多的影響因素,本研究將預測建模目標放在泡沫化尚不嚴重且較具有潛力的中國新一線城市杭州市,自新浪二手房網爬取杭州市房地產數據,並自國家統計局取得各地區行政支出數據,作為實證分析資料。結合自動程序爬蟲抓取數據、統計分析與機器學習方法,期望對中國房地產建立一混合非監督式與監督式學習之模型。
在分群結果之後建構模型採用之技術為C5.0、三層CHAID、五層CHAID與Neural Network,挑選出最適合的模型為使用混合模型後的C5.0決策樹方法,達到降低變數維度亦提升或達到相當的預測準確率的雙贏目標,模型中行政地區、面積、總樓層為最頻出現的重要變數。
另外透過集群分析於行政支出的應用,發現2016年度杭州市投入的行政支出集中於余杭區、蕭山區、濱江區,成為賣屋及購屋者的第二項決策標準。
zh_TW
dc.description.abstract (摘要) In recent years, with the growth of the Internet and the importance of data platform on public sector and private sector. Getting and sharing information are made easily. The culture of real estate in China is different from Taiwan. For instance, there is no actual house price registration system. Furthermore, traditional estimate model may not be directly applicable to China which has the vast geographical area of the mainland. There are many factors to influence house price model. This study focus on Hangzhou city. Because the burst of real estate bubbles is not serious as first-tier cities and it is one of new first-tier cities in China. The research data were crawler from Sina second-hand housing website and National Bureau of Statistics. By using auto web crawler skill, statistical analysis, and machine learning method to build a real estate model in China, which was combining unsupervised learning method with supervised learning method.
After clustering Hangzhou second-hand housing data, this study used C5.0, three layers Chi-Square Automatic Interaction Detector(CHAID), five layers CHAID, and Neural Network(NN). The study goal are both reducing dimension and getting better forecast accuracy. Choosing clustering- C5.0 model as appropriate house price model to achieve win-win situation after comparing final result. Administrative region, area, and total floor are the top three high frequency influential factors.
Applying Clustering Analysis to administrative expenses data in Hangzhou, the study found that the government resource focus on Yuhang, Xiaoshan, and Binjiang. It can be the second decision-making criterion for house sellers and house buyers.
en_US
dc.description.tableofcontents 摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程 3
第二章 文獻探討 5
第一節 房地產價格之相關文獻 5
第二節 房地產特徵估價方法 10
第三節 混合模型 12
第三章 研究設計與方法 14
第一節 資料來源 14
第二節 研究架構 14
第三節 操作性變數 15
第四節 研究方法 18
第四章 實證分析 24
第一節 數據預處理 24
第二節 探索性分析 27
第三節 集群分析 36
第四節 平均數檢定 40
第五節 預測模型 42
第六節 未來房屋趨勢分析 47
第五章 結論與建議 52
第一節 研究結論 52
第二節 研究建議 54
參考文獻 55
中文文獻 55
英文文獻 57
附錄 59
一、整體C5.0模型樹枝圖 59
二、蛋黃區C5.0模型樹枝圖 66
三、蛋白區C5.0樹枝圖 70
四、蛋殼區C5.0樹枝圖 73
zh_TW
dc.format.extent 3410667 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105354007en_US
dc.subject (關鍵詞) 房地產估價zh_TW
dc.subject (關鍵詞) 大數據zh_TW
dc.subject (關鍵詞) 神經網絡zh_TW
dc.subject (關鍵詞) 混合模型zh_TW
dc.subject (關鍵詞) Appraisal of real estateen_US
dc.subject (關鍵詞) Big dataen_US
dc.subject (關鍵詞) Neural networken_US
dc.subject (關鍵詞) Mixed modelen_US
dc.title (題名) 應用大數據於杭州市房地產價格模型之建立zh_TW
dc.title (題名) The Application of Big Data Analytics on Real Estate Price Model of Hangzhouen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文文獻
1.呂宜倫,(2016),應用決策樹分析於資料探勘之研究-以預測混凝土抗壓強度為例,高雄應用科技大學工業工程與管理系碩士在職專班論文。
2.杜雪君、黃中華、吳次芳,(2009),房地產稅、地方公共支出對房價的影響:全國及區域層面的面板數據分析,中國土地科學,第23卷第7期學術論著,9-13。
3.沈瑋婷,(2014),集群分析應用於法國紅酒拍賣價格之特性瞭解,政治大學統計學系碩士論文。
4.林建亨,(2008),南科對房地產價格之影響-特徵價格法之應用。成功大學都市計畫研究所碩士論文。
5.林英彥,(2006),不動產估價,文笙書局股份有限公司。
6.林祖嘉、馬毓駿,(2007),特徵方程式大量估計法在台灣不動產市場之應用,住宅學報,第十六卷第二期學術論著,1-22。
7.林逸塵,(2002),類神經網路應用於空氣品質預測之研究,中山大學環境工程研究所碩士論文。
8.紀侑廷,(2014),科技園區周邊住宅房價影響因素之研究-以新竹科學園區為例,中興大學應用經濟所碩士論文。
9.張又仁,(2014),應用協同過濾與決策樹與地點感知餐廳推薦,中國文化大學商學院資訊管理學系碩士論文。
10.張金鶚,(2003),房地產投資與市場分析:理論與實務,華泰出版社。
11.許易民,(2011),近期中國大陸房地產情勢與影響,經濟研究,第11期,449-470。
12.陳京群,(2017),探討台北市人口特性與不動產交易之關聯性,政治大學統計學系碩士論文。
13.陳既翕,(2013),透天住宅特徵屬性對房價之影響分析-以台南市永康區透天住宅為例,崑山科技大學房地產開發與管理研究所碩士論文。
14.陳振亮、謝振環,(2017),經濟學(第五版),東華出版社。
15.陳樹衡、郭子文、棗厥庸,(2007),以決策樹之迴歸樹建構住宅價格模型台灣地區之實證分析,住宅學報,第十六卷第一期學術論著,1-20。
16.曾仁人,(2014),資料採礦在網路消費行為預測模型之應用,政治大學統計學系碩士論文。
17.劉叢欣,(2011),高房價的政治經濟學分析,中國城市經濟,3期,34-35。
18.蔡育政,(2009),影響房地產價格因素之研究:以台中市北屯區、西屯區、南屯區、中區、東區為例,朝陽科技大學財務金融所碩士論文。
19.蔡育展,(2017),機器學習與房地產估價,政治大學資訊管理學系碩士論文。
20.鄭偉安,(2016),都市公園綠地對於房價之影響‒以高雄市區為例,中山大學經濟系研究所碩士論文。
21.盧世勳、劉雨芬,(2012),全球金融危機後中國大陸房市發展-兼論官方之因應措施及其影響,國際金融參考資料,第64輯,27-51。
22.謝文盛,(2000),公共支出、租稅收入與住宅市場之研究,政治大學經濟學系博士論文。
23.謝邦昌、鄭宇庭與蘇志雄,(2017),Data Mining概述: 以Clementine 12.0為例,元華文創。
二、英文文獻
1.Jim, C. Y. & W. Y. Chen (2006). Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landscape and Urban Planning, Vol. 78, No. 4, pp.422-434.
2.Kong, F., H. Yin & N. Nakagoshi (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City(China), Landscape and Urban Planning, Vol. 79, No. 3-4, pp. 240-252.
3.Lee, T. S. & I. F. Chen (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, Vol. 28, No. 4, pp. 743-752.
4.Liang, X., H. S. Zhang, J. G. Mao & Y. Chen (2009). Improving option price forecasts with neural networks and support vector regressions. Neurocomputing, Vol. 72, No. 13-15, pp. 3055-3065.
5.Loh, W. Y. & Y. S. Shih (1997). Split selection methods for classification trees. Statistica Sinica, Vol. 7, pp. 815-840.
6.McCulloch, W. S. & W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology, Vol. 5, No. 4, pp. 115-133.
7.Oates, W. E. (1969). The Effects of Property Taxes and Local Public Spending on Property Values: An Empirical Study of Tax Capitalization and the Tiebout Hypothesis. The Journal of Political Economy, Vol. 77, No. 6, pp. 957-971.
8.Pandey, P. & I. Singh (2016). Improving Accuracy using different Data Mining Algorithms, International Journal of Computer Applications, Vol. 150, No. 10, pp. 10-13.
9.Peterson, S. & A. B. Flanagan (2009). Neural network hedonic pricing models in mass real estate appraisal. Journal of Real Estate Research, Vol. 31, No. 2, pp. 147-164.
10.Rosen, S. (1974). Hedonic Price and Implicit Markets: Product Differentiation in Pure Competition, Journal of Political Economics. Vol. 82, No 1, pp. 34-55.
11.Zhang, R., Q. Du, J. Geng, B. Liu & Y. Huang (2015). An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a case study. Habitat International, Vol. 46, pp. 196-205.
zh_TW