學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 無母數模糊相關權重指數加權移動平均管制圖設計
An nonparametric Fuzzy Relative Weight Exponentially Weighted Moving Average control chart design作者 游善涵
You, Shan Han貢獻者 鄭宇庭<br>郭訓志
Cheng, Yu Ting<br>Ku, Hsun Chih
游善涵
You, Shan Han關鍵詞 無母數管制圖
移動加權平均
模糊相關權重日期 2018 上傳時間 1-六月-2018 17:34:09 (UTC+8) 摘要 隨著品質管制技術的開發,越來越多產業將品質管制的理念應用在產業資料中,而品質管制的方法非常多樣,其中統計製程管制(SPC)為品質管制中重要的技術,其主要是以統計理論背景做支持對產品製程進行監控,本文也將針對SPC中理論背景較完整的管制圖方法做進一步的研究,然而品管在實務應用上,母體資料通常為非特定分配或者未知分配,諸多文獻中已證實,若使用特定假設分配的有母數管制圖用於製程狀態為非假設分布時,會導致管制狀態下的平均連串長度不穩健的情形,若使用無母數管制圖做監控,其管制狀態平均連串長度具有穩健性,因此無母數管制圖實用性能高出許多,近年來對無母數管制圖的研究越來越進步,然而現存的無母數管制圖大多是針對產品製程中平均數、變異數的變動,或者是使用符號函數(sign function)、排序(rank)等方式對觀測值和目標值的差距做監控,又或者觀察資料的分佈狀況監控其分配或目標值是否有偏移的情形等,較少有針對觀測值前後之間變動的差距來偵測資料出現偏移的狀況,因此本文提出一個新的無母數管制圖,想利用模糊相關權重統計量的性質來呈現觀測值之間變動的情形,以此統計量為基礎,建構無母數模糊相關權重指數加權平均(FRWEWMA)管制圖,對製程資料中的平均數(位置參數)和標準差(尺度參數)進行監控,並透過平均連串長度來比較FRWEWMA 管制圖和其他管制圖偵測效能的差異與優勢為何。 參考文獻 一、中文文獻1. 黃榮臣、張耕銘,2012,利用無母數EWMA 管制圖監控製程平均數/位置參數與變異數/尺度參數。2. 黃子銘、鄭舜壕,2010,無母數指數加權移動平管制圖伴隨變動管制界線。二、英文文獻1. Amin, R.W. and A. J. Searcy. 1991. A nonparametric exponentially weightedmoving average control scheme. Communications in Statistics - Simulation andComputation, Vol. 20, No. 4, pp.1049-1072.2. Balakrishnan, N. and H. K.T. Ng. 2006. Precedence-type tests and applications.3. Borror, C. M. and D. C. Montgomery. 1999. Robustness of the EWMA controlchart to non-normality. Journal of Quality Technology, Vol. 31, No. 3, pp.309-316.4. Chahraborti, S. 2011. Distribution-Free quality control charts.5. Chakraborti, S., P. Van Der Laan, and S. T. Bakir. 2001. Nonparametric controlcharts: An overview and some results. Journal of Quality Technology, Vol. 33,No3, pp.304-315.6. Chakraborti, S., S. W. Human, and M. A. Graham. 2008. Phase I statistic processcontrol charts: an overview and some results. Quality Engineering, Vol. 21, No.1, pp.52-627. Champ, C. W. and S. E. Rigdon. 2007. A comparison of the markov chain andthe integral equation approaches for evaluating the run length distribution ofquality control charts. Communications in Statistics - Simulation andComputation, Vol. 20, No. 1, pp.191-204.8. Yang, C. C. 2017. An Evaluation of the FRWMA Chart for Dependent Interval‧valued Data. Cluster Computing, Vol. 17, No. 6, pp.1-8.9. Gemai, C., W. C. Smiley, and X. Hansheng. 2001. Monitoring process mean andvariability with one EWMA chart. Journal of Quality Technology, Vol. 33, No.2, pp.223-233.10. Gibbons, J. D. and S. Chakraborti. 2003. Nonparametric statistic inference.pp.50811. Gramham, M. A., A. Mukherjee and S. Chahraborti. 2012. Distribution-freeexponentially weighted moving average control charts for monitoring unknownlocation. Computational Statistics & Data Analysis, Vol. 56, No. 8, pp.2539-2561.12. Gramham, M. A., S. Chahraborti and S. W. Human. 2011. A nonparametricexponentially weighted moving average signed-rank chart for monitoringlocation. Computational Statistics & Data Analysis, Vol. 55, No. 8, pp.2490-2503.13. Hackl, P. and J. Leodolter. 1999. A control chart based on ranks. Journal ofQuality Technology, Vol. 23, No. 2, pp.117-124.14. Longcheen, H., C. J. Huang and Y. H. T. Wang. 2010. New EWMA controlcharts for monitoring process dispersion. Computational Statistics & DataAnalysis, Vol. 54, No. 10, pp.2328-2342.15. Lucas, M. J. and S. M. Saccucci. 1990. Exponentially weighted moving averagecontrol schemes: properties and enhancements. Technometrics, Vol. 32, No. 1,pp.1-12.16. Montgomery, D. C., G. C. Runger and N. F. Hubele. 2009. Statistical qualitycontrol. pp. 386-411.17. Roberts, S. W. 1959. Control chart test based on geometric moving averages.Technometrics, Vol. 1, No. 3, pp.239-250.18. Robinson, P. B. and T. Y. Ho. 1978. Average run lengths of geometric movingaverage charts by numerical methods. Technometrics, Vol. 20, No. 1, pp.85-9319. Stoumbos, Z. G. and J. H. Sullivan. 2002. Robustness to non-normarlity ofmultivariate EWMA control chart. Journal of Quality Technology, Vol. 34, No.3, pp.260-276.20. Li, S. U., T. L. Ching and S. H. Ng. 2010. Nonparametric CUSUM and EWMAcontrol charts for detecting mean shifts. Journal of Quality Technology, Vol. 42,No. 2, pp.209-226.21. Woodall, W. H. and D. C. Montgomery. 1999. Research issues and ideas instatistical process control. Journal of Quality Technology, Vol. 49, No. 4,pp.376-386 描述 碩士
國立政治大學
統計學系
105354012資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105354012 資料類型 thesis dc.contributor.advisor 鄭宇庭<br>郭訓志 zh_TW dc.contributor.advisor Cheng, Yu Ting<br>Ku, Hsun Chih en_US dc.contributor.author (作者) 游善涵 zh_TW dc.contributor.author (作者) You, Shan Han en_US dc.creator (作者) 游善涵 zh_TW dc.creator (作者) You, Shan Han en_US dc.date (日期) 2018 en_US dc.date.accessioned 1-六月-2018 17:34:09 (UTC+8) - dc.date.available 1-六月-2018 17:34:09 (UTC+8) - dc.date.issued (上傳時間) 1-六月-2018 17:34:09 (UTC+8) - dc.identifier (其他 識別碼) G0105354012 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/117441 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 統計學系 zh_TW dc.description (描述) 105354012 zh_TW dc.description.abstract (摘要) 隨著品質管制技術的開發,越來越多產業將品質管制的理念應用在產業資料中,而品質管制的方法非常多樣,其中統計製程管制(SPC)為品質管制中重要的技術,其主要是以統計理論背景做支持對產品製程進行監控,本文也將針對SPC中理論背景較完整的管制圖方法做進一步的研究,然而品管在實務應用上,母體資料通常為非特定分配或者未知分配,諸多文獻中已證實,若使用特定假設分配的有母數管制圖用於製程狀態為非假設分布時,會導致管制狀態下的平均連串長度不穩健的情形,若使用無母數管制圖做監控,其管制狀態平均連串長度具有穩健性,因此無母數管制圖實用性能高出許多,近年來對無母數管制圖的研究越來越進步,然而現存的無母數管制圖大多是針對產品製程中平均數、變異數的變動,或者是使用符號函數(sign function)、排序(rank)等方式對觀測值和目標值的差距做監控,又或者觀察資料的分佈狀況監控其分配或目標值是否有偏移的情形等,較少有針對觀測值前後之間變動的差距來偵測資料出現偏移的狀況,因此本文提出一個新的無母數管制圖,想利用模糊相關權重統計量的性質來呈現觀測值之間變動的情形,以此統計量為基礎,建構無母數模糊相關權重指數加權平均(FRWEWMA)管制圖,對製程資料中的平均數(位置參數)和標準差(尺度參數)進行監控,並透過平均連串長度來比較FRWEWMA 管制圖和其他管制圖偵測效能的差異與優勢為何。 zh_TW dc.description.tableofcontents 目 錄 I表目錄 II圖目錄 III第壹章 緒論 1第一節 研究背景 1第二節 研究動機與目的 2第三節 研究流程 3第貳章 EWMA管制圖 4第一節 EWMA管制理論 4第二節 管制圖效能評估準則-平均連串長度 10第參章 模糊相關權重 13第一節 模糊相關權重的介紹 13第二節 模糊相關權重的應用 14第肆章 模糊相關權重指數加權移動平均管制圖 22第一節 模糊相關權重指數加權移動平均(FRW Exponentially Weighted Moving Average, FRWEWMA)管制圖設計 22第二節 模擬分析 26第三節 實證分析 46第伍章 結論與建議 49第一節 結論 49第二節 建議 50參考文獻 52 zh_TW dc.format.extent 1431851 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105354012 en_US dc.subject (關鍵詞) 無母數管制圖 zh_TW dc.subject (關鍵詞) 移動加權平均 zh_TW dc.subject (關鍵詞) 模糊相關權重 zh_TW dc.title (題名) 無母數模糊相關權重指數加權移動平均管制圖設計 zh_TW dc.title (題名) An nonparametric Fuzzy Relative Weight Exponentially Weighted Moving Average control chart design en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、中文文獻1. 黃榮臣、張耕銘,2012,利用無母數EWMA 管制圖監控製程平均數/位置參數與變異數/尺度參數。2. 黃子銘、鄭舜壕,2010,無母數指數加權移動平管制圖伴隨變動管制界線。二、英文文獻1. Amin, R.W. and A. J. Searcy. 1991. A nonparametric exponentially weightedmoving average control scheme. Communications in Statistics - Simulation andComputation, Vol. 20, No. 4, pp.1049-1072.2. Balakrishnan, N. and H. K.T. Ng. 2006. Precedence-type tests and applications.3. Borror, C. M. and D. C. Montgomery. 1999. Robustness of the EWMA controlchart to non-normality. Journal of Quality Technology, Vol. 31, No. 3, pp.309-316.4. Chahraborti, S. 2011. Distribution-Free quality control charts.5. Chakraborti, S., P. Van Der Laan, and S. T. Bakir. 2001. Nonparametric controlcharts: An overview and some results. Journal of Quality Technology, Vol. 33,No3, pp.304-315.6. Chakraborti, S., S. W. Human, and M. A. Graham. 2008. Phase I statistic processcontrol charts: an overview and some results. Quality Engineering, Vol. 21, No.1, pp.52-627. Champ, C. W. and S. E. Rigdon. 2007. A comparison of the markov chain andthe integral equation approaches for evaluating the run length distribution ofquality control charts. Communications in Statistics - Simulation andComputation, Vol. 20, No. 1, pp.191-204.8. Yang, C. C. 2017. An Evaluation of the FRWMA Chart for Dependent Interval‧valued Data. Cluster Computing, Vol. 17, No. 6, pp.1-8.9. Gemai, C., W. C. Smiley, and X. Hansheng. 2001. Monitoring process mean andvariability with one EWMA chart. Journal of Quality Technology, Vol. 33, No.2, pp.223-233.10. Gibbons, J. D. and S. Chakraborti. 2003. Nonparametric statistic inference.pp.50811. Gramham, M. A., A. Mukherjee and S. Chahraborti. 2012. Distribution-freeexponentially weighted moving average control charts for monitoring unknownlocation. Computational Statistics & Data Analysis, Vol. 56, No. 8, pp.2539-2561.12. Gramham, M. A., S. Chahraborti and S. W. Human. 2011. A nonparametricexponentially weighted moving average signed-rank chart for monitoringlocation. Computational Statistics & Data Analysis, Vol. 55, No. 8, pp.2490-2503.13. Hackl, P. and J. Leodolter. 1999. A control chart based on ranks. Journal ofQuality Technology, Vol. 23, No. 2, pp.117-124.14. Longcheen, H., C. J. Huang and Y. H. T. Wang. 2010. New EWMA controlcharts for monitoring process dispersion. Computational Statistics & DataAnalysis, Vol. 54, No. 10, pp.2328-2342.15. Lucas, M. J. and S. M. Saccucci. 1990. Exponentially weighted moving averagecontrol schemes: properties and enhancements. Technometrics, Vol. 32, No. 1,pp.1-12.16. Montgomery, D. C., G. C. Runger and N. F. Hubele. 2009. Statistical qualitycontrol. pp. 386-411.17. Roberts, S. W. 1959. Control chart test based on geometric moving averages.Technometrics, Vol. 1, No. 3, pp.239-250.18. Robinson, P. B. and T. Y. Ho. 1978. Average run lengths of geometric movingaverage charts by numerical methods. Technometrics, Vol. 20, No. 1, pp.85-9319. Stoumbos, Z. G. and J. H. Sullivan. 2002. Robustness to non-normarlity ofmultivariate EWMA control chart. Journal of Quality Technology, Vol. 34, No.3, pp.260-276.20. Li, S. U., T. L. Ching and S. H. Ng. 2010. Nonparametric CUSUM and EWMAcontrol charts for detecting mean shifts. Journal of Quality Technology, Vol. 42,No. 2, pp.209-226.21. Woodall, W. H. and D. C. Montgomery. 1999. Research issues and ideas instatistical process control. Journal of Quality Technology, Vol. 49, No. 4,pp.376-386 zh_TW