學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 以微觀模擬探討多車道使用規則:對臺灣高速公路行車法規建言
A comparative study of multi-lane traffic rules using microsimulation modeling: a proposal for highway rules in Taiwan作者 張太乙
Zhang, Taiyi貢獻者 林瑜琤
Lin, Yu-Cheng
張太乙
Zhang, Taiyi關鍵詞 微觀模擬
多車道模型
變換車道規則
單車道模型
基本構圖
Microsimulation
Multi-lane model
Lane-changing rules
Single-lane model
Fundamental diagram of traffic flow日期 2018 上傳時間 12-六月-2018 18:00:28 (UTC+8) 摘要 本論文藉由微觀模擬探討高速公路(或快速公路)之車道使用規則。我們比較三種規則:(1)對稱規則,車輛得選擇任一車道行車,並允許左側超車與右側超車;(2)非對稱規則,車輛僅能使用右側車道行車,並僅允許左側超車,完成超車之車輛須駛回右側車道繼續行車;(3)複合規則,車輛得選擇最左側車道以外之車道行車,而左側車道為超車道,於其上之車輛完成超車後須駛回相鄰之右側車道繼續行車。基礎構圖為比較之基準。模擬結果顯示非對稱規則使得總體流量提升。本論文之結果可作為法規修訂之參考。
Using microsimulation we investigate a set of lane-changing rules for highway traffic. We compare three types of lane-changing rules in terms of the fundamental diagram of traffic flow in multi-lane versions of the Nagel-Schreckenberg model: (1) the symmetric rule, in which overtaking is allowed on all lanes; (2) the asymmetric rule, in which overtaking is forbidden on the right; vehicles should use left-hand lanes to overtake but return to the right lane after overtaking when safety criteria are fulfilled; (3) the hybrid rule, in which the leftmost lane is the overtaking lane while other lanes are treated equally as in the symmetric rule; the hybrid rule differs from the asymmetric rule only when the total number of lanes is larger than two. The simulation results show that the overall traffic flow increases when the asymmetric rule of lane changes is applied, revealing the advantage of this type of overtaking regulations.參考文獻 [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8.[2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12.[3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html.[4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228.[5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266.[6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell.[7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825.[8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation.[9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/.[10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009.[11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223.[12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271.[13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439.[14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432.[15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314.[16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188.[17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958.[18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106.[19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707.[20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995.[21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672.[22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918.[23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229.[24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437.[25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966.[26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550.[27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672.[28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg.[29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105.[30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001.[31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92. 描述 碩士
國立政治大學
應用物理研究所
103755005資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103755005 資料類型 thesis dc.contributor.advisor 林瑜琤 zh_TW dc.contributor.advisor Lin, Yu-Cheng en_US dc.contributor.author (作者) 張太乙 zh_TW dc.contributor.author (作者) Zhang, Taiyi en_US dc.creator (作者) 張太乙 zh_TW dc.creator (作者) Zhang, Taiyi en_US dc.date (日期) 2018 en_US dc.date.accessioned 12-六月-2018 18:00:28 (UTC+8) - dc.date.available 12-六月-2018 18:00:28 (UTC+8) - dc.date.issued (上傳時間) 12-六月-2018 18:00:28 (UTC+8) - dc.identifier (其他 識別碼) G0103755005 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/117658 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用物理研究所 zh_TW dc.description (描述) 103755005 zh_TW dc.description.abstract (摘要) 本論文藉由微觀模擬探討高速公路(或快速公路)之車道使用規則。我們比較三種規則:(1)對稱規則,車輛得選擇任一車道行車,並允許左側超車與右側超車;(2)非對稱規則,車輛僅能使用右側車道行車,並僅允許左側超車,完成超車之車輛須駛回右側車道繼續行車;(3)複合規則,車輛得選擇最左側車道以外之車道行車,而左側車道為超車道,於其上之車輛完成超車後須駛回相鄰之右側車道繼續行車。基礎構圖為比較之基準。模擬結果顯示非對稱規則使得總體流量提升。本論文之結果可作為法規修訂之參考。 zh_TW dc.description.abstract (摘要) Using microsimulation we investigate a set of lane-changing rules for highway traffic. We compare three types of lane-changing rules in terms of the fundamental diagram of traffic flow in multi-lane versions of the Nagel-Schreckenberg model: (1) the symmetric rule, in which overtaking is allowed on all lanes; (2) the asymmetric rule, in which overtaking is forbidden on the right; vehicles should use left-hand lanes to overtake but return to the right lane after overtaking when safety criteria are fulfilled; (3) the hybrid rule, in which the leftmost lane is the overtaking lane while other lanes are treated equally as in the symmetric rule; the hybrid rule differs from the asymmetric rule only when the total number of lanes is larger than two. The simulation results show that the overall traffic flow increases when the asymmetric rule of lane changes is applied, revealing the advantage of this type of overtaking regulations. en_US dc.description.tableofcontents 摘要 iiiAbstract v目錄 vii1 緒論 12 單車道模型 32.1 簡介 32.2 模擬結果 72.3 交通相態變化之探討 122.3.1 序參數 142.3.2 空間關聯 152.3.3 鬆弛時間 183 二車道模型 213.1 簡介 213.2 模型定義 223.2.1 對稱模型 223.2.2 單車種非對稱模型 243.2.3 二車種非對稱模型 263.3 模擬結果 273.3.1 單車種 283.3.2 二車種 313.4 小結 354 三車道模型 394.1 簡介 394.2 對稱模型 404.3 非對稱模型 414.4 複合模型 424.5 模擬結果 424.5.1 單車種 434.5.2 二車種 465 結論與建議 515.1 結論 515.2 討論 525.2.1 非均車速之成因 525.2.2 對於現行法規之探討 535.3 建議 535.4 展望 55A 模型變換車道條件程式碼 57參考文獻 67 zh_TW dc.format.extent 2727069 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103755005 en_US dc.subject (關鍵詞) 微觀模擬 zh_TW dc.subject (關鍵詞) 多車道模型 zh_TW dc.subject (關鍵詞) 變換車道規則 zh_TW dc.subject (關鍵詞) 單車道模型 zh_TW dc.subject (關鍵詞) 基本構圖 zh_TW dc.subject (關鍵詞) Microsimulation en_US dc.subject (關鍵詞) Multi-lane model en_US dc.subject (關鍵詞) Lane-changing rules en_US dc.subject (關鍵詞) Single-lane model en_US dc.subject (關鍵詞) Fundamental diagram of traffic flow en_US dc.title (題名) 以微觀模擬探討多車道使用規則:對臺灣高速公路行車法規建言 zh_TW dc.title (題名) A comparative study of multi-lane traffic rules using microsimulation modeling: a proposal for highway rules in Taiwan en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8.[2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12.[3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html.[4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228.[5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266.[6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell.[7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825.[8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation.[9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/.[10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009.[11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223.[12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271.[13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439.[14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432.[15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314.[16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188.[17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958.[18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106.[19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707.[20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995.[21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672.[22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918.[23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229.[24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437.[25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966.[26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550.[27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672.[28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg.[29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105.[30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001.[31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92. zh_TW