學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 以微觀模擬探討多車道使用規則:對臺灣高速公路行車法規建言
A comparative study of multi-lane traffic rules using microsimulation modeling: a proposal for highway rules in Taiwan
作者 張太乙
Zhang, Taiyi
貢獻者 林瑜琤
Lin, Yu-Cheng
張太乙
Zhang, Taiyi
關鍵詞 微觀模擬
多車道模型
變換車道規則
單車道模型
基本構圖
Microsimulation
Multi-lane model
Lane-changing rules
Single-lane model
Fundamental diagram of traffic flow
日期 2018
上傳時間 12-六月-2018 18:00:28 (UTC+8)
摘要 本論文藉由微觀模擬探討高速公路(或快速公路)之車道使用規則。我們比較三種規則:(1)對稱規則,車輛得選擇任一車道行車,並允許左側超車與右側超車;(2)非對稱規則,車輛僅能使用右側車道行車,並僅允許左側超車,完成超車之車輛須駛回右側車道繼續行車;(3)複合規則,車輛得選擇最左側車道以外之車道行車,而左側車道為超車道,於其上之車輛完成超車後須駛回相鄰之右側車道繼續行車。基礎構圖為比較之基準。模擬結果顯示非對稱規則使得總體流量提升。本論文之結果可作為法規修訂之參考。
Using microsimulation we investigate a set of lane-changing rules for highway traffic. We compare three types of lane-changing rules in terms of the fundamental diagram of traffic flow in multi-lane versions of the Nagel-Schreckenberg model: (1) the symmetric rule, in which overtaking is allowed on all lanes; (2) the asymmetric rule, in which overtaking is forbidden on the right; vehicles should use left-hand lanes to overtake but return to the right lane after overtaking when safety criteria are fulfilled; (3) the hybrid rule, in which the leftmost lane is the overtaking lane while other lanes are treated equally as in the symmetric rule; the hybrid rule differs from the asymmetric rule only when the total number of lanes is larger than two. The simulation results show that the overall traffic flow increases when the asymmetric rule of lane changes is applied, revealing the advantage of this type of overtaking regulations.
參考文獻 [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8.
[2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12.
[3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html.
[4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228.
[5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266.
[6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell.
[7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825.
[8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation.
[9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/.
[10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009.
[11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223.
[12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271.
[13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439.
[14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432.
[15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314.
[16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188.
[17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958.
[18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106.
[19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707.
[20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995.
[21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672.
[22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918.
[23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229.
[24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437.
[25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966.
[26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550.
[27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672.
[28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg.
[29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105.
[30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001.
[31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92.
描述 碩士
國立政治大學
應用物理研究所
103755005
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103755005
資料類型 thesis
dc.contributor.advisor 林瑜琤zh_TW
dc.contributor.advisor Lin, Yu-Chengen_US
dc.contributor.author (作者) 張太乙zh_TW
dc.contributor.author (作者) Zhang, Taiyien_US
dc.creator (作者) 張太乙zh_TW
dc.creator (作者) Zhang, Taiyien_US
dc.date (日期) 2018en_US
dc.date.accessioned 12-六月-2018 18:00:28 (UTC+8)-
dc.date.available 12-六月-2018 18:00:28 (UTC+8)-
dc.date.issued (上傳時間) 12-六月-2018 18:00:28 (UTC+8)-
dc.identifier (其他 識別碼) G0103755005en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/117658-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用物理研究所zh_TW
dc.description (描述) 103755005zh_TW
dc.description.abstract (摘要) 本論文藉由微觀模擬探討高速公路(或快速公路)之車道使用規則。我們比較三種規則:(1)對稱規則,車輛得選擇任一車道行車,並允許左側超車與右側超車;(2)非對稱規則,車輛僅能使用右側車道行車,並僅允許左側超車,完成超車之車輛須駛回右側車道繼續行車;(3)複合規則,車輛得選擇最左側車道以外之車道行車,而左側車道為超車道,於其上之車輛完成超車後須駛回相鄰之右側車道繼續行車。基礎構圖為比較之基準。模擬結果顯示非對稱規則使得總體流量提升。本論文之結果可作為法規修訂之參考。zh_TW
dc.description.abstract (摘要) Using microsimulation we investigate a set of lane-changing rules for highway traffic. We compare three types of lane-changing rules in terms of the fundamental diagram of traffic flow in multi-lane versions of the Nagel-Schreckenberg model: (1) the symmetric rule, in which overtaking is allowed on all lanes; (2) the asymmetric rule, in which overtaking is forbidden on the right; vehicles should use left-hand lanes to overtake but return to the right lane after overtaking when safety criteria are fulfilled; (3) the hybrid rule, in which the leftmost lane is the overtaking lane while other lanes are treated equally as in the symmetric rule; the hybrid rule differs from the asymmetric rule only when the total number of lanes is larger than two. The simulation results show that the overall traffic flow increases when the asymmetric rule of lane changes is applied, revealing the advantage of this type of overtaking regulations.en_US
dc.description.tableofcontents 摘要 iii
Abstract v
目錄 vii
1 緒論 1
2 單車道模型 3
2.1 簡介 3
2.2 模擬結果 7
2.3 交通相態變化之探討 12
2.3.1 序參數 14
2.3.2 空間關聯 15
2.3.3 鬆弛時間 18
3 二車道模型 21
3.1 簡介 21
3.2 模型定義 22
3.2.1 對稱模型 22
3.2.2 單車種非對稱模型 24
3.2.3 二車種非對稱模型 26
3.3 模擬結果 27
3.3.1 單車種 28
3.3.2 二車種 31
3.4 小結 35
4 三車道模型 39
4.1 簡介 39
4.2 對稱模型 40
4.3 非對稱模型 41
4.4 複合模型 42
4.5 模擬結果 42
4.5.1 單車種 43
4.5.2 二車種 46
5 結論與建議 51
5.1 結論 51
5.2 討論 52
5.2.1 非均車速之成因 52
5.2.2 對於現行法規之探討 53
5.3 建議 53
5.4 展望 55
A 模型變換車道條件程式碼 57
參考文獻 67
zh_TW
dc.format.extent 2727069 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103755005en_US
dc.subject (關鍵詞) 微觀模擬zh_TW
dc.subject (關鍵詞) 多車道模型zh_TW
dc.subject (關鍵詞) 變換車道規則zh_TW
dc.subject (關鍵詞) 單車道模型zh_TW
dc.subject (關鍵詞) 基本構圖zh_TW
dc.subject (關鍵詞) Microsimulationen_US
dc.subject (關鍵詞) Multi-lane modelen_US
dc.subject (關鍵詞) Lane-changing rulesen_US
dc.subject (關鍵詞) Single-lane modelen_US
dc.subject (關鍵詞) Fundamental diagram of traffic flowen_US
dc.title (題名) 以微觀模擬探討多車道使用規則:對臺灣高速公路行車法規建言zh_TW
dc.title (題名) A comparative study of multi-lane traffic rules using microsimulation modeling: a proposal for highway rules in Taiwanen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] 高速公路及快速公路交通管制規則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=K0040019&FLNO=8.
[2] 違反道路交通管理事件統一裁罰基準及處理細則. http://law.moj.gov.tw/LawClass/LawSingle.aspx?Pcode=D0080029&FLNO=12.
[3] 道路交通法. http://law.e-gov.go.jp/htmldata/S35/S35HO105.html.
[4] Code de la route. http://www.legifrance.gouv.fr/affichCode.do?cidTexte=LEGITEXT000006074228.
[5] Highway Code. https://www.gov.uk/guidance/the-highway-code/motorways-253-to-273#lane-discipline-rules-264-to-266.
[6] Nagel-Schreckenberg-Modell. https://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell.
[7] Reglement verkeersregels en verkeerstekens 1990 (RVV 1990). http://wetten.overheid.nl/BWBR0004825.
[8] Regulation No 39 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles with regard to the speedometer equipment including its installation.
[9] Straßenverkehrs-Ordnung. http://www.gesetze-im-internet.de/stvo_2013/.
[10] 林品亨, 林信賢. 速率計檢測介紹. https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_m073_05.pdf, 12 2009.
[11] Biroli, G. Jamming: A new kind of phase transition? Nature Physics 3, 4 (2007), 222–223.
[12] Chowdhury, D., Kertész, J., Nagel, K., Santen, L., and Schadschneider, A. Comment on “Critical behavior of a traffic flow model”. Phys. Rev. E 61 (3 2000), 3270–3271.
[13] Chowdhury, D., Wolf, D. E., and Schreckenberg, M. Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules. Physica A: Statistical Mechanics and its Applications 235, 3-4 (1997), 417–439.
[14] Csányi, G., and Kertész, J. Scaling behaviour in discrete traffic models. Journal of Physics A: Mathematical and General 28, 2 (1995), L427–L432.
[15] Eisenblätter, B., Santen, L., Schadschneider, A., and Schreckenberg, M. Jamming transition in a cellular automaton model for traffic flow. Phys. Rev. E 57, 2 (1998), 1309–1314.
[16] Gerwinski, M., and Krug, J. Analytic approach to the critical density in cellular automata for traffic flow. Physical Review E 60, 1 (1999), 188.
[17] Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 7 (2000), 815–958.
[18] Iannini, M. L. L., and Dickman, R. Traffic model with an absorbing-state phase transition. Phys. Rev. E 95 (2 2017), 022106.
[19] Krauss, S., Wagner, P., and Gawron, C. Continuous limit of the Nagel-Schreckenberg model. Physical Review E 54, 4 (1996), 3707.
[20] Nagel, K. Particle hopping vs. fluid-dynamical models for traffic flow, 1995.
[21] Nagel, K. Particle hopping models and traffic flow theory. Phys. Rev. E 53 (5 1996), 4655–4672.
[22] Nagel, K., and Paczuski, M. Emergent traffic jams. Phys. Rev. E 51 (4 1995), 2909–2918.
[23] Nagel, K., and Schreckenberg, M. A cellular automaton model for freeway traffic. Journal de Physique I 2, 12 (1992), 2221–2229.
[24] Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. Two-lane traffic rules for cellular automata: A systematic approach. Phys. Rev. E 58, 2 (1997), 1425–1437.
[25] Neumann, J. v., and Burks, A. W. Theory of self-reproducing automata, 1966.
[26] Rickert, M., Nagel, K., and Schreckenberg, M. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications 231 (1996), 534–550.
[27] Roters, L., Lübeck, S., and Usadel, K. Critical behavior of a traffic flow model. Physical Review E 59, 3 (1999), 2672.
[28] Schadschneider, A. Modelling of transport and traffic problems. In Cellular Automata. ACRI 2008. Lecture Notes in Computer Science, vol 5191. (2008), U. H., M. S., N. K., K. T., and B. S., Eds., Springer, Berlin, Heidelberg.
[29] Souza, A. M. C. d., and Vilar, L. Traffic-flow cellular automaton: Order parameter and its conjugated field. Physical Review E 80, 2 (2009), 021105.
[30] Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., ichi Tadaki, S., and Yukawa, S. Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10, 3 (2008), 033001.
[31] Vilar, L. C. Q., and De Souza, A. Cellular automata models for general traffic conditions on a line. Physica A: Statistical Mechanics and its Applications 211, 1 (1994), 84–92.
zh_TW