Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 衝動反應的個別差異之神經基礎:DRL操作式制約行為與藥物酬賞行為的相關
Neural basis of individual differences of impulsive action:correlation between DRL operant behavior and drug-reward behavior
作者 莊淳聿
貢獻者 廖瑞銘
莊淳聿
關鍵詞 藥物成癮
安非他命
多巴胺
制約性場地偏好
低頻反應區分增強作業
西方點墨
Drug addiction
Amphetamine
Dopamine
Conditioned place preference
Differential reinforcement of low-rates responding
Western blot
日期 2018
上傳時間 23-Jul-2018 16:51:38 (UTC+8)
摘要 不當的衝動反應已被認為與數種精神疾患有關(包含藥癮),多元面向的衝動反應可區分為衝動選擇及衝動反應。針對衝動反應的個別差異與藥癮之間的關聯,本研究利用區辨性增強低頻反應作業(簡稱DRL作業)之行為表現的個別差異,在兩種安非他命引發的不同藥物酬賞行為[制約性場地偏好(簡稱CPP)與行為致敏化(簡稱BS)],探討其相關性。行為藥理實驗後藉由西方點墨法,分析中腦多巴胺系統的五個相關腦區之四種蛋白質的含量:第一型多巴胺受體(dopamine D1 receptor)、第二型多巴胺受體(dopamine D2 receptor)、多巴胺轉運蛋白(dopamine transporter;DAT)及腦源性神經營養因子(brain-derived neurotrophic factor;BDNF)。實驗結果發現每一批48隻大鼠(共三批),經14或17天的DRL行為訓練,其行為反應效率比值排序可以經四分位數,區分出高中低三群不等程度的衝動反應;這三群受試在六項DRL行為反應指標,均有顯著組間差異。實驗1的結果顯示,三組不同衝動程度的受試皆有顯著的CPP,惟DRL行為反應之個別差異與安非他命引發的CPP藥物酬賞效果並無統計相關。實驗1的生化分析顯示安非他命會對四種蛋白質在五個腦區有不同形式的影響效果,但其與DRL行為反應並無任何統計相關。實驗2的結果顯示DRL行為反應之個別差異與安非他命誘發BS的效果有顯著相關,即DRL行為反應效率較好的低衝動組受試,其藥物引發BS行為反應效果較弱;反之亦然。實驗2的生化分析結果顯示,背側紋狀體的D1受器與DRL行為個別差異之表現有正相關,背側紋狀體與海馬迴的DAT與安非他命引發BS藥效結果有正相關。綜合以上實驗結果,DRL行為反應所代表的衝動反應之個別差異,對於安非他命引發之CPP行為並無預測效果,但對於安非他命引發的BS有預測效果;而且這兩項藥物酬賞行為分別與不同腦區的多巴胺相關蛋白有獨特的統計相關,顯示DRL行為的個別差異之多巴胺相關神經基礎,取決於藥物酬賞行為的檢測模式。
Impulsive behavior has been considered to be related to several mental disorders including drug addiction. Individuals with abnormally high level of impulsivity are usually more likely to have drug addiction. This study used a differential reinforcement of low-rate response (DRL) task to investigate impulsive action that could be related to conditioned place preference (CPP) and behavioral sensitization (BS) as induced by amphetamine. Western blotting was used to analyze four proteins, dopamine D1 and D2 receptors, dopamine transporter (DAT) and brain-derived neurotrophic factor (BDNF), expressed in five brain regions relevant to the midbrain dopamine systems after psychopharmacological test. The results show that the subjects (n=47 or 48) in each of three batches trained in a DRL 10-sec task for 14 (or 17), based on the response efficiency, can be sorted by a quartile method into three groups with different levels of impulsivity (i.e., high, intermediate and low). The between-group difference was also confirmed on each of six measures of the present DRL behavior. Data of Experiment 1-1 and Experiment 1-2 together showed significant CPP induced by amphetamine; however, it was not correlated to the individual differences of DRL behavior. Biochemical assay of Experiment 1-2 revealed that amphetamine had different effects on the four proteins in the five brain regions, but these effects were not statistically correlated with behavioral responses of DRL. The results of Experiment 2 showed that the individual differences of DRL behavior were significantly correlated to the effects of amphetamine-induced BS. The low impulsive subjects had a weaker drug-induced BS and vice versa. Biochemical assay of Experiment 2 showed that there was a positive correlation between the amount of D1 receptors expressed in the dorsal striatum and the efficiency of DRL behavior; and in the dorsal striatum and the hippocampus, there was a positive correlation between the DAT and the BS induced by amphetamine. Together, the individual differences of impulse action assessed by DRL behavior can be used to predict the varied magnitudes of BS, but not CPP, induced by amphetamine. And, distinctive neural substrates are involved in psychopharmacological effects of CPP and BS induced by amphetamine.
參考文獻 Aguilar MA, Rodríguez-Arias M, Miñarro J (2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev, 59(2), 253-277.
Anker JJ, Perry JL, Gliddon LA, Carroll ME (2009) Impulsivity predicts the escalation of cocaine self-administration in rats. Pharmacol Biochem Behav, 93(3), 343-348.
Benwell MEM, Balfour DJK (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105(4). 849-856.
Belzung C, Scearce-Levie K, Barreau S, Hen R (2000) Absence of cocaine-induced place conditioning in serotonin 1B receptor knock-out mice. Pharmacol Biochem Behav 66(1). 221-225.
Bosse KE, Charlton JL, Susick LL, Newman B, Eagle AL, Mathews TA, Conti AC (2015) Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8‐deficient mice. J Neurochem 135(6). 1218-1231.
Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S, Wang YT (2005) Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310(5752). 1340-1343.
Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320(5881). 1352-1355.
Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, . . . Schoffelmeer AN (2012) The relationship between impulsive choice and impulsive action: a cross-species translational study. PloS one 7(5). e36781.
Buckley P. (2009) Association of Low Striatal Dopamine D2 Receptor Availability With Nicotine Dependence Similar to That Seen With Other Drugs of Abuse. Year Book of Psychiatry Applied Mental Health 2009 324.
Caine SB, Heinrichs SC, Coffin VL, Koob GF (1995) Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens amygdala or striatum on cocaine self-administration in the rat. Brain Res 692(1). 47-56.
Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B, Robbins TW (2014) Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol Psychia 75(2). 115-123.
Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13(6). 1071-1077.
Cheng RK, Liao RM (2017) Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in rats. Behav Brain Res 331 177-187.
Cheung TH, Cardinal RN (2005) Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci 6 36.
Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity impulsivity and compulsivity. Behav Brain Res 146(1-2). 105-119.
Crews FT, Boettiger CA (2009) Impulsivity frontal lobes and risk for addiction. Pharmacol Biochem Behav 93(3). 237-247.
Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nature protocols 1(4). 1662.
Cunningham CL, Noble D (1992) Conditioned activation induced by ethanol: Role in sensitization and conditioned place preference. Pharmacol Biochem Behav 43(1). 307-313.
D`Amour-Horvat V, Leyton M (2014) Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Front Behav Neurosci 8 432.
Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Probst K (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816). 1267-1270.
Dalley JW, Mar AC, Economidou D,Robbins TW (2008). Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav, 90(2), 250-260.
Dalley JW, Roiser J (2012) Dopamine serotonin and impulsivity. Neuroscience 215 42-58.
Dalley JW, Robbins TW (2017) Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 18(3). 158.
de Wit H, Richards JB (2004) Dual determinants of drug use in humans: reward and impulsivity. Nebr Symp Motiv 50 19-55.
Diergaarde L, Pattij T, Nawijn L, Schoffelmeer AN, De Vries TJ (2009) Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behav Neurosci 123(4). 794.
Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychia 63(3). 301-308.
Dietz DM, Tapocik J, Gaval-Cruz M, Kabbaj M (2005) Dopamine transporter but not tyrosine hydroxylase may be implicated in determining individual differences in behavioral sensitization to amphetamine. Physiol Bevav 86(3). 347-355.
Eagle DM, Robbins TW (2003) Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res 146(1). 131-144.
Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychia 65(10). 851-856.
Ersche KD, Turton AJ, Pradhan S, Bullmore ET, Robbins TW (2010) Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychia 68(8). 770-773.
Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363(1507). 3125-3135.
Fuchs RA, Weber SM, Rice HJ, Neisewander JL (2002) Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats. Brain Res 929(1). 15-25.
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L (2010). Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav-Rev, 35(2), 157-171.
Gelman A, Loken E (2016) The statistical crisis in science. The Best Writing on Mathematics 2015 305.
Gorwood P, Le Strat Y, Ramoz N, Dubertret C, Moalic J-M, & Simonneau M. (2012). Genetics of dopamine receptors and drug addiction. Hum Genet, 131(6), 803-822.
Goutier W, O’Connor JJ, Lowry JP, McCreary AC (2015) The effect of nicotine induced behavioral sensitization on dopamine D1 receptor pharmacology: An in vivo and ex vivo study in the rat. Eur Neuropsychopharm 25(6). 933-943.
Grüsser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl). 175(3). 296-302.
Ho MY, Mobini S, Chiang TJ, Bradshaw CM, Szabadi E (1999) Theory and method in the quantitative analysis of "impulsive choice" behaviour: implications for psychopharmacology. Psychopharmacology (Berl). 146(4). 362-372.
Jentsch JD, Ashenhurst JR, Cervantes M, CGroman SM, James AS, Pennington ZT (2014) Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 1327(1). 1-26.
Joyce EM, Iversen SD (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci Lett 14(2). 207-212.
Jupp B & Dalley JW (2014). Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol, 171(20), 4729-4766.
Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16(3). 223-244.
Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Ppharmacol Exp Ther 245(3). 1095-1102.
Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94(3). 507-522.
Kim M, Au E, Neve R, Yoon BJ (2009) AMPA receptor trafficking in the dorsal striatum is critical for behavioral sensitization to cocaine in juvenile mice. Biochem Bioph Res Co 379(1). 65-69.
Lecourtier L, Kelly PH (2005) Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacol 30(3). 484-496.
Liao RM, Cheng RK (2005) Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. Chin J Physiol 48(1). 41-50.
Liao RM, Lin HL. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: the role of environmental context. Chin J Physiol, 51(6), 394-401.
Malenka R, Nestler E, Hyman S (2009) Reinforcement and addictive disorders. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed, pp. 364-375. New York: McGraw-Hill Medical.
McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D (2010) Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology (Berl). 212(4). 453-464.
Mlewski EC, Arias C, Paglini G (2016) Association between the expression of amphetamine-induced behavioral sensitization and Cdk5/p35 activity in dorsal striatum. Behav Neurosci 130(1). 114.
Molander A, CMar A, Norbury A, Steventon S, Moreno M, Caprioli D, Robbins TW (2011) High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity anxiety or stress. Psychopharmacology (Berl). 215(4). 721-731.
Muller SE, Weijers HG, Boning J, Wiesbeck GA (2008) Personality traits predict treatment outcome in alcohol-dependent patients. Neuropsychobiology 57(4). 159-164.
Napier T, CHerrold AA, de Wit H (2013) Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev 37(9 Pt A). 2081-2086.
Nichols CD, Sanders-Bush E (2002) A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 26(5). 634.
Nikulina EM, Covington HE, Ganschow L, Hammer RP, Miczek KA (2004) Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience 123(4). 857-865.
Parikh V, Naughton SX, Shi X, Kelley LK, Yegla B, Tallarida CS, Unterwald EM (2014) Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization. Neurochem int 75 54-65.
Paterson NE, Wetzler , CHackett A, Hanania T (2012) Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsycho 15(10). 1473-1487.
Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29(4). 192-199.
Perugini M, Vezina P (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens. J Ppharmacol Exp Ther 270(2). 690-696.
Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25(2). 192-216.
Pothuizen HH, Jongen-Relo AL, Feldon J, Yee BK (2005) Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur J Neurosci 22(10). 2605-2616.
Sanchis‐Segura C, Spanagel R (2006). Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol, 11(1), 2-38.
Robinson ESJ, Eagle DM, Economidou D, Theobald DEH, Mar A, CMurphy ER, Dalley JW (2009) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res 196(2). 310-316.
Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11(2). 157-198.
Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18(3). 247-291.
Schmaal L, Broos N, Joos L, Pattij T, Goudriaan AE (2013) Impulse control in addiction: a translational perspective. Tijdschr Psychia 55(11). 823-831.
Seo D, Patrick CJ, Kennealy PJ (2008) Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 13(5). 383-395.
Seymour CM, Wagner JJ (2008) Simultaneous expression of cocaine-induced behavioral sensitization and conditioned place preference in individual rats. Brain Res 1213 57-68.
Shen YL, Chang TY, Chang YC, Tien HH, Yang FC Wang PY, Liao RM (2014) Elevated BDNF mRNA expression in the medial prefrontal cortex after d-amphetamine reinstated conditioned place preference in rats. Neuroscience 263 88-95.
Shim I, Javaid JI, Wirtshafter D, Jang SY, Shin KH, Lee HJ, . . . Chun BG (2001) Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behav Brain Res 121(1). 137-147.
Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B (2013) Prefrontal cortical–striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 37(11). 1779-1788.
Singewald N, Salchner P, Sharp T (2003) Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychia 53(4). 275-283.
Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, . . . Uhl GR (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci U S A 98(9). 5300-5305.
Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30(5). 228-235.
Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27(1-2). 163-178.
Tzschentke TM (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol, 56(6), 613-672.
Tzschentke TM, Schmidt WJ (2000) Blockade of behavioral sensitization by MK-801: fact or artifact? Psychopharmacology (Berl). 151(2). 142-151.
van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychia 60(1). 66-73.
Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 151(2-3). 99-120.
Velázquez-Sánchez , CFerragud A, Moore CF, Everitt BJ, Sabino V, Cottone P (2014) High trait impulsivity predicts food addiction-like behavior in the rat. Neuropsychopharmacology 39(10). 2463.
Verdejo-García A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research problem gamblers and genetic association studies. Neurosci Biobehav Rev 32(4). 777-810.
Volkow ND, Wang G.-J, Telang F, Fowler JS, Logan J, Childress AR, . . . Wong C (2006) Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction. J Neurosci 26(24). 6583-6588.
Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to Cocaine-Seeking After Hippocampal Theta Burst Stimulation. Science 292(5519). 1175-1178.
Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clin Psychol Rev 26(4). 379-395.
Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34(8). 1306-1318.
Yates JR, Marusich JA, Gipson CD, Beckmann JS, Bardo MT (2012) High impulsivity in rats predicts amphetamine conditioned place preference. Pharmacol Biochem Behav 100(3). 370-376.
描述 碩士
國立政治大學
神經科學研究所 
104754001
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104754001
資料類型 thesis
dc.contributor.advisor 廖瑞銘zh_TW
dc.contributor.author (Authors) 莊淳聿zh_TW
dc.creator (作者) 莊淳聿zh_TW
dc.date (日期) 2018en_US
dc.date.accessioned 23-Jul-2018 16:51:38 (UTC+8)-
dc.date.available 23-Jul-2018 16:51:38 (UTC+8)-
dc.date.issued (上傳時間) 23-Jul-2018 16:51:38 (UTC+8)-
dc.identifier (Other Identifiers) G0104754001en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/118809-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 神經科學研究所 zh_TW
dc.description (描述) 104754001zh_TW
dc.description.abstract (摘要) 不當的衝動反應已被認為與數種精神疾患有關(包含藥癮),多元面向的衝動反應可區分為衝動選擇及衝動反應。針對衝動反應的個別差異與藥癮之間的關聯,本研究利用區辨性增強低頻反應作業(簡稱DRL作業)之行為表現的個別差異,在兩種安非他命引發的不同藥物酬賞行為[制約性場地偏好(簡稱CPP)與行為致敏化(簡稱BS)],探討其相關性。行為藥理實驗後藉由西方點墨法,分析中腦多巴胺系統的五個相關腦區之四種蛋白質的含量:第一型多巴胺受體(dopamine D1 receptor)、第二型多巴胺受體(dopamine D2 receptor)、多巴胺轉運蛋白(dopamine transporter;DAT)及腦源性神經營養因子(brain-derived neurotrophic factor;BDNF)。實驗結果發現每一批48隻大鼠(共三批),經14或17天的DRL行為訓練,其行為反應效率比值排序可以經四分位數,區分出高中低三群不等程度的衝動反應;這三群受試在六項DRL行為反應指標,均有顯著組間差異。實驗1的結果顯示,三組不同衝動程度的受試皆有顯著的CPP,惟DRL行為反應之個別差異與安非他命引發的CPP藥物酬賞效果並無統計相關。實驗1的生化分析顯示安非他命會對四種蛋白質在五個腦區有不同形式的影響效果,但其與DRL行為反應並無任何統計相關。實驗2的結果顯示DRL行為反應之個別差異與安非他命誘發BS的效果有顯著相關,即DRL行為反應效率較好的低衝動組受試,其藥物引發BS行為反應效果較弱;反之亦然。實驗2的生化分析結果顯示,背側紋狀體的D1受器與DRL行為個別差異之表現有正相關,背側紋狀體與海馬迴的DAT與安非他命引發BS藥效結果有正相關。綜合以上實驗結果,DRL行為反應所代表的衝動反應之個別差異,對於安非他命引發之CPP行為並無預測效果,但對於安非他命引發的BS有預測效果;而且這兩項藥物酬賞行為分別與不同腦區的多巴胺相關蛋白有獨特的統計相關,顯示DRL行為的個別差異之多巴胺相關神經基礎,取決於藥物酬賞行為的檢測模式。zh_TW
dc.description.abstract (摘要) Impulsive behavior has been considered to be related to several mental disorders including drug addiction. Individuals with abnormally high level of impulsivity are usually more likely to have drug addiction. This study used a differential reinforcement of low-rate response (DRL) task to investigate impulsive action that could be related to conditioned place preference (CPP) and behavioral sensitization (BS) as induced by amphetamine. Western blotting was used to analyze four proteins, dopamine D1 and D2 receptors, dopamine transporter (DAT) and brain-derived neurotrophic factor (BDNF), expressed in five brain regions relevant to the midbrain dopamine systems after psychopharmacological test. The results show that the subjects (n=47 or 48) in each of three batches trained in a DRL 10-sec task for 14 (or 17), based on the response efficiency, can be sorted by a quartile method into three groups with different levels of impulsivity (i.e., high, intermediate and low). The between-group difference was also confirmed on each of six measures of the present DRL behavior. Data of Experiment 1-1 and Experiment 1-2 together showed significant CPP induced by amphetamine; however, it was not correlated to the individual differences of DRL behavior. Biochemical assay of Experiment 1-2 revealed that amphetamine had different effects on the four proteins in the five brain regions, but these effects were not statistically correlated with behavioral responses of DRL. The results of Experiment 2 showed that the individual differences of DRL behavior were significantly correlated to the effects of amphetamine-induced BS. The low impulsive subjects had a weaker drug-induced BS and vice versa. Biochemical assay of Experiment 2 showed that there was a positive correlation between the amount of D1 receptors expressed in the dorsal striatum and the efficiency of DRL behavior; and in the dorsal striatum and the hippocampus, there was a positive correlation between the DAT and the BS induced by amphetamine. Together, the individual differences of impulse action assessed by DRL behavior can be used to predict the varied magnitudes of BS, but not CPP, induced by amphetamine. And, distinctive neural substrates are involved in psychopharmacological effects of CPP and BS induced by amphetamine.en_US
dc.description.tableofcontents 摘要 i
Abstract ii
目次 iv
附圖目次 vi
附錄圖 viii
附錄表 ix
第一章. 緒 論 1
一、 前言 1
二、 衝動與藥物濫用的關係 1
三、 衝動特質的剖析 1
四、 衝動與藥物上癮的實證研究 3
五、 藥物上癮與衝動特質的神經基礎 4
六、 制約性場地偏好與行為致敏化的比較 5
七、 個別差異 8
八、 研究目的 9
第二章. 材料與方法 11
一、 受試者 11
二、 實驗儀器 11
1. 操作式制約箱 11
2. 場地制約箱 12
3. 自發性行為活動測試儀器 12
三、 使用藥物 12
四、 行為作業的基本實驗步驟 13
1. 低頻反應區分增強作業 (DRL) 13
2. 制約性場地偏好 (conditioned place preference ; CPP) 14
3. 行為致敏化 (behavioral sensitization ; BS) 15
五、 生化分析 16
六、 統計方法 19
第三章. 實驗1:DRL-10行為差異與藥物引發制約性場地偏好 20
一、 目的 20
二、 實驗1-1步驟 20
三、 實驗1-1結果 21
四、 實驗1-1討論 24
五、 實驗1-2步驟 25
六、 實驗1-2結果 25
七、 實驗1-2討論 30
第四章. 實驗2:DRL-10行為差異與藥物引發行為致敏化 32
一、 目的 32
二、 實驗2步驟 32
三、 實驗2結果 32
四、 實驗2討論 36
第五章. 綜合討論 38
一、 DRL-10作業表現之個別差異與常態分佈 38
二、 藥癮行為結果與衝動群差異 40
三、 生化分析結果及其與行為實驗的相關分析 44
四、 結論 47
參考文獻 48
附圖 55
附錄圖 80
附錄表 85


附圖目次
Fig. 1:實驗1-1的受試在DRL-10作業14天習得歷程的效率、分佈狀況,與受試三分組後的DRL-10作業的習得的效率 55
Fig. 2:實驗1-1 DRL-10訓練第14天,不同衝動反應的三組受試之IRT曲線圖 56
Fig. 3:實驗1-1 受試分三群組後的總壓桿數、得酬賞之反應次數、未得酬賞之反應次數、促發反應次數、高峰時間、高峰頻率之結果 57
Fig. 4:實驗1-1 DRL-10兩次再測試的結果 58
Fig. 5:實驗1-1之首次CPP測試結果 59
Fig. 6:實驗1-1 CPP再燃測試與先前CPP的前後測相較之結果 60
Fig. 7:實驗1-1使用西方點墨分析實驗組與控制組,五個腦區中四種蛋白質的含量結果之比較 61
Fig. 8:實驗1-2的受試在DRL-10作業17天習得歷程的效率、分佈狀況,與受試三分組後的DRL-10作業的習得的效率 62
Fig. 9:實驗1-2 DRL-10訓練第17天,不同衝動反應的三組受試之IRT曲線圖 63
Fig. 10:實驗1-2 受試分三群組後的總壓桿數、得酬賞之反應次數、未得酬賞之反應次數、促發反應次數、高峰時間、高峰頻率之結果 64
Fig. 11:實驗1-2兩次 DRL-20 shift test的結果 65
Fig. 12:實驗1-2之首次CPP測試結果 66
Fig. 13:實驗1-2 CPP再燃測試與先前CPP的前後測相較之結果 67
Fig. 14:實驗1-2受試犧牲取腦前之活動量測試 68
Fig. 15:實驗1-2使用西方點墨分析實驗組與控制組,五個腦區中四種蛋白質的含量結果之比較 69
Fig. 16:實驗1-2安非他命處理受試的DRL-10效率與蛋白質含量的散佈圖結果 70
Fig. 17:實驗1-2安非他命處理受試的CPP後測結果與蛋白質含量的散佈圖結果 71
Fig. 18:實驗2的受試在DRL-10作業14天習得歷程的效率、分佈狀況,與受試三分組後的DRL-10作業的習得的效率 72
Fig. 19:實驗2 DRL-10訓練第14天,不同衝動反應的三組受試之IRT曲線圖 73
Fig. 20:實驗2受試分三群組後的總壓桿數、得酬賞之反應次數、未得酬賞之反應次數、促發反應次數、高峰時間、高峰頻率之結果 74
Fig. 21:實驗2 所有47隻受試的行為致敏化實驗結果 75
Fig. 22:實驗2行為致敏化實驗,受試分成高中低衝動三組的前後測活動量比較圖 76
Fig. 23:實驗2 DRL-10再測試與安非他命劑量反應測試 77
Fig. 24:實驗2 DRL行為效率與安非他命行為致敏化結果的散佈圖 78
Fig. 25:實驗2受試的DRL及藥癮行為表現與蛋白質含量的散佈圖 79

附錄圖
A-fig. 1:實驗1與實驗2受試的FR訓練結果 81
A-fig. 2:實驗1與實驗2受試的MRE及latency的結果 82
A-fig. 3:Exp.1-2 Elevated T-maze 83
A-fig. 4:Exp. 2 U型相關(2次函數散佈圖) 84

附錄表
A-Table 1:(Exp.1-1實驗組皮爾森相關係數表) 86
A-Table 2:(Exp.1-1控制組皮爾森相關係數表) 87
A-Table 4:(Exp.1-2實驗組皮爾森相關係數表) 88
A-Table 5:(Exp.1-2實驗組皮爾森相關係數表 – 刪去離群值) 89
A-Table 6:(Exp.1-2控制組皮爾森相關係數表) 90
A-Table 7:(Exp. 2皮爾森相關係數表) 91
zh_TW
dc.format.extent 1458505 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104754001en_US
dc.subject (關鍵詞) 藥物成癮zh_TW
dc.subject (關鍵詞) 安非他命zh_TW
dc.subject (關鍵詞) 多巴胺zh_TW
dc.subject (關鍵詞) 制約性場地偏好zh_TW
dc.subject (關鍵詞) 低頻反應區分增強作業zh_TW
dc.subject (關鍵詞) 西方點墨zh_TW
dc.subject (關鍵詞) Drug addictionen_US
dc.subject (關鍵詞) Amphetamineen_US
dc.subject (關鍵詞) Dopamineen_US
dc.subject (關鍵詞) Conditioned place preferenceen_US
dc.subject (關鍵詞) Differential reinforcement of low-rates respondingen_US
dc.subject (關鍵詞) Western bloten_US
dc.title (題名) 衝動反應的個別差異之神經基礎:DRL操作式制約行為與藥物酬賞行為的相關zh_TW
dc.title (題名) Neural basis of individual differences of impulsive action:correlation between DRL operant behavior and drug-reward behavioren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Aguilar MA, Rodríguez-Arias M, Miñarro J (2009). Neurobiological mechanisms of the reinstatement of drug-conditioned place preference. Brain Res Rev, 59(2), 253-277.
Anker JJ, Perry JL, Gliddon LA, Carroll ME (2009) Impulsivity predicts the escalation of cocaine self-administration in rats. Pharmacol Biochem Behav, 93(3), 343-348.
Benwell MEM, Balfour DJK (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105(4). 849-856.
Belzung C, Scearce-Levie K, Barreau S, Hen R (2000) Absence of cocaine-induced place conditioning in serotonin 1B receptor knock-out mice. Pharmacol Biochem Behav 66(1). 221-225.
Bosse KE, Charlton JL, Susick LL, Newman B, Eagle AL, Mathews TA, Conti AC (2015) Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8‐deficient mice. J Neurochem 135(6). 1218-1231.
Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S, Wang YT (2005) Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310(5752). 1340-1343.
Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320(5881). 1352-1355.
Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, . . . Schoffelmeer AN (2012) The relationship between impulsive choice and impulsive action: a cross-species translational study. PloS one 7(5). e36781.
Buckley P. (2009) Association of Low Striatal Dopamine D2 Receptor Availability With Nicotine Dependence Similar to That Seen With Other Drugs of Abuse. Year Book of Psychiatry Applied Mental Health 2009 324.
Caine SB, Heinrichs SC, Coffin VL, Koob GF (1995) Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens amygdala or striatum on cocaine self-administration in the rat. Brain Res 692(1). 47-56.
Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B, Robbins TW (2014) Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol Psychia 75(2). 115-123.
Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13(6). 1071-1077.
Cheng RK, Liao RM (2017) Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in rats. Behav Brain Res 331 177-187.
Cheung TH, Cardinal RN (2005) Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci 6 36.
Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity impulsivity and compulsivity. Behav Brain Res 146(1-2). 105-119.
Crews FT, Boettiger CA (2009) Impulsivity frontal lobes and risk for addiction. Pharmacol Biochem Behav 93(3). 237-247.
Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nature protocols 1(4). 1662.
Cunningham CL, Noble D (1992) Conditioned activation induced by ethanol: Role in sensitization and conditioned place preference. Pharmacol Biochem Behav 43(1). 307-313.
D`Amour-Horvat V, Leyton M (2014) Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Front Behav Neurosci 8 432.
Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Probst K (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315(5816). 1267-1270.
Dalley JW, Mar AC, Economidou D,Robbins TW (2008). Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav, 90(2), 250-260.
Dalley JW, Roiser J (2012) Dopamine serotonin and impulsivity. Neuroscience 215 42-58.
Dalley JW, Robbins TW (2017) Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 18(3). 158.
de Wit H, Richards JB (2004) Dual determinants of drug use in humans: reward and impulsivity. Nebr Symp Motiv 50 19-55.
Diergaarde L, Pattij T, Nawijn L, Schoffelmeer AN, De Vries TJ (2009) Trait impulsivity predicts escalation of sucrose seeking and hypersensitivity to sucrose-associated stimuli. Behav Neurosci 123(4). 794.
Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychia 63(3). 301-308.
Dietz DM, Tapocik J, Gaval-Cruz M, Kabbaj M (2005) Dopamine transporter but not tyrosine hydroxylase may be implicated in determining individual differences in behavioral sensitization to amphetamine. Physiol Bevav 86(3). 347-355.
Eagle DM, Robbins TW (2003) Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res 146(1). 131-144.
Economidou D, Pelloux Y, Robbins TW, Dalley JW, Everitt BJ (2009) High impulsivity predicts relapse to cocaine-seeking after punishment-induced abstinence. Biol Psychia 65(10). 851-856.
Ersche KD, Turton AJ, Pradhan S, Bullmore ET, Robbins TW (2010) Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychia 68(8). 770-773.
Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363(1507). 3125-3135.
Fuchs RA, Weber SM, Rice HJ, Neisewander JL (2002) Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats. Brain Res 929(1). 15-25.
Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L (2010). Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav-Rev, 35(2), 157-171.
Gelman A, Loken E (2016) The statistical crisis in science. The Best Writing on Mathematics 2015 305.
Gorwood P, Le Strat Y, Ramoz N, Dubertret C, Moalic J-M, & Simonneau M. (2012). Genetics of dopamine receptors and drug addiction. Hum Genet, 131(6), 803-822.
Goutier W, O’Connor JJ, Lowry JP, McCreary AC (2015) The effect of nicotine induced behavioral sensitization on dopamine D1 receptor pharmacology: An in vivo and ex vivo study in the rat. Eur Neuropsychopharm 25(6). 933-943.
Grüsser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl). 175(3). 296-302.
Ho MY, Mobini S, Chiang TJ, Bradshaw CM, Szabadi E (1999) Theory and method in the quantitative analysis of "impulsive choice" behaviour: implications for psychopharmacology. Psychopharmacology (Berl). 146(4). 362-372.
Jentsch JD, Ashenhurst JR, Cervantes M, CGroman SM, James AS, Pennington ZT (2014) Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 1327(1). 1-26.
Joyce EM, Iversen SD (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci Lett 14(2). 207-212.
Jupp B & Dalley JW (2014). Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol, 171(20), 4729-4766.
Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16(3). 223-244.
Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Ppharmacol Exp Ther 245(3). 1095-1102.
Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94(3). 507-522.
Kim M, Au E, Neve R, Yoon BJ (2009) AMPA receptor trafficking in the dorsal striatum is critical for behavioral sensitization to cocaine in juvenile mice. Biochem Bioph Res Co 379(1). 65-69.
Lecourtier L, Kelly PH (2005) Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacol 30(3). 484-496.
Liao RM, Cheng RK (2005) Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. Chin J Physiol 48(1). 41-50.
Liao RM, Lin HL. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: the role of environmental context. Chin J Physiol, 51(6), 394-401.
Malenka R, Nestler E, Hyman S (2009) Reinforcement and addictive disorders. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed, pp. 364-375. New York: McGraw-Hill Medical.
McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D (2010) Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacology (Berl). 212(4). 453-464.
Mlewski EC, Arias C, Paglini G (2016) Association between the expression of amphetamine-induced behavioral sensitization and Cdk5/p35 activity in dorsal striatum. Behav Neurosci 130(1). 114.
Molander A, CMar A, Norbury A, Steventon S, Moreno M, Caprioli D, Robbins TW (2011) High impulsivity predicting vulnerability to cocaine addiction in rats: some relationship with novelty preference but not novelty reactivity anxiety or stress. Psychopharmacology (Berl). 215(4). 721-731.
Muller SE, Weijers HG, Boning J, Wiesbeck GA (2008) Personality traits predict treatment outcome in alcohol-dependent patients. Neuropsychobiology 57(4). 159-164.
Napier T, CHerrold AA, de Wit H (2013) Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev 37(9 Pt A). 2081-2086.
Nichols CD, Sanders-Bush E (2002) A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology 26(5). 634.
Nikulina EM, Covington HE, Ganschow L, Hammer RP, Miczek KA (2004) Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience 123(4). 857-865.
Parikh V, Naughton SX, Shi X, Kelley LK, Yegla B, Tallarida CS, Unterwald EM (2014) Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization. Neurochem int 75 54-65.
Paterson NE, Wetzler , CHackett A, Hanania T (2012) Impulsive action and impulsive choice are mediated by distinct neuropharmacological substrates in rat. Int J Neuropsycho 15(10). 1473-1487.
Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29(4). 192-199.
Perugini M, Vezina P (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens. J Ppharmacol Exp Ther 270(2). 690-696.
Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25(2). 192-216.
Pothuizen HH, Jongen-Relo AL, Feldon J, Yee BK (2005) Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. Eur J Neurosci 22(10). 2605-2616.
Sanchis‐Segura C, Spanagel R (2006). Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol, 11(1), 2-38.
Robinson ESJ, Eagle DM, Economidou D, Theobald DEH, Mar A, CMurphy ER, Dalley JW (2009) Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: Specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res 196(2). 310-316.
Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11(2). 157-198.
Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18(3). 247-291.
Schmaal L, Broos N, Joos L, Pattij T, Goudriaan AE (2013) Impulse control in addiction: a translational perspective. Tijdschr Psychia 55(11). 823-831.
Seo D, Patrick CJ, Kennealy PJ (2008) Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 13(5). 383-395.
Seymour CM, Wagner JJ (2008) Simultaneous expression of cocaine-induced behavioral sensitization and conditioned place preference in individual rats. Brain Res 1213 57-68.
Shen YL, Chang TY, Chang YC, Tien HH, Yang FC Wang PY, Liao RM (2014) Elevated BDNF mRNA expression in the medial prefrontal cortex after d-amphetamine reinstated conditioned place preference in rats. Neuroscience 263 88-95.
Shim I, Javaid JI, Wirtshafter D, Jang SY, Shin KH, Lee HJ, . . . Chun BG (2001) Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behav Brain Res 121(1). 137-147.
Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B (2013) Prefrontal cortical–striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 37(11). 1779-1788.
Singewald N, Salchner P, Sharp T (2003) Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychia 53(4). 275-283.
Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, . . . Uhl GR (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci U S A 98(9). 5300-5305.
Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30(5). 228-235.
Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27(1-2). 163-178.
Tzschentke TM (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol, 56(6), 613-672.
Tzschentke TM, Schmidt WJ (2000) Blockade of behavioral sensitization by MK-801: fact or artifact? Psychopharmacology (Berl). 151(2). 142-151.
van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychia 60(1). 66-73.
Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl). 151(2-3). 99-120.
Velázquez-Sánchez , CFerragud A, Moore CF, Everitt BJ, Sabino V, Cottone P (2014) High trait impulsivity predicts food addiction-like behavior in the rat. Neuropsychopharmacology 39(10). 2463.
Verdejo-García A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research problem gamblers and genetic association studies. Neurosci Biobehav Rev 32(4). 777-810.
Volkow ND, Wang G.-J, Telang F, Fowler JS, Logan J, Childress AR, . . . Wong C (2006) Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction. J Neurosci 26(24). 6583-6588.
Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to Cocaine-Seeking After Hippocampal Theta Burst Stimulation. Science 292(5519). 1175-1178.
Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clin Psychol Rev 26(4). 379-395.
Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34(8). 1306-1318.
Yates JR, Marusich JA, Gipson CD, Beckmann JS, Bardo MT (2012) High impulsivity in rats predicts amphetamine conditioned place preference. Pharmacol Biochem Behav 100(3). 370-376.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.IN.002.2018.C05-