學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 基於保序迴歸估計的資料遞增性檢定
Testing for an increasing trend based on isotonic regression
作者 黃鈺茹
Huang, Yu-Ju
貢獻者 黃子銘
黃鈺茹
Huang, Yu-Ju
關鍵詞 保序迴歸
遞增性檢定
濾波器
週期圖
Isotonic regression
PAVA
Filter
Periodogram
Examine the increasing trend
日期 2018
上傳時間 6-八月-2018 18:09:46 (UTC+8)
摘要 本研究目的是在檢測時間序列資料是否隨時間遞增。本文中提出先估算資料的週期,再使用濾波器消除週期,再檢驗資料的遞增趨勢。在檢定遞增趨勢時,使用保序迴歸及逐段迴歸配適時間序列的趨勢,再以兩種趨勢的差距計算檢定統計量。本研究將所提出的方法應用於2015年北台灣的空氣品質資料,檢定結果發現大部分汙染物濃度並無遞增趨勢。
The purpose of this study is to test whether a time series has an increasing trend. This paper proposes to estimate the period of the time series first, then use a filter to eliminate the period, and then examine whether the filtered time series has an increasing trend. In examining the increasing trend, we use isotonic regression and piecewise regression to fit the trend of the time series, and then compute the difference between the fitted trends to obtain the test statistic. In this study, I apply the proposed method to the air quality data of North Taiwan in 2015. There are no increasing trends for most of the tested time series.
參考文獻 [1] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. New York : John Wiley & Sons.
     [2] Best MJ, Chakravarti N. (1990). Active Set Algorithms for Isotonic Regression; A Unifying Framework. Mathematical Programming, 47(1-3):425–439.
     [3] Brunk HB. (1955). Maximum Likelihood Estimates of Monotone Parameters. The Annals of Mathematical Statistics, 26(4):607–616.
     [4] de Leeuw, J., Hornik, K. and Mair, P. (2009). Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods .Journal of Statistical Software, 32(5):1–24.
     [5] Peter J. Brockwell and Richard A. Davis. (2002). Introduction to Time Series and Forecasting(2nd ed.). New York : Springer.
     [6] Piet Groeneboom and Geurt Jongbloed. (2010). Generalized continuous isotonic regression. Statistics and Probability Letters,80 (3-4):248-253.
     [7] Tibshirani, R., Hoefling, H. and Tibshirani, R. (2011). Nearly isotonic regression. Technometrics, 53(1):54–61.
     [8] Tim Robertson, F. T. Wright and R. L. Dykstra. (1988). Order Restricted Statistical Inference. New York : John Wiley & Sons.
描述 碩士
國立政治大學
統計學系
105354028
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105354028
資料類型 thesis
dc.contributor.advisor 黃子銘zh_TW
dc.contributor.author (作者) 黃鈺茹zh_TW
dc.contributor.author (作者) Huang, Yu-Juen_US
dc.creator (作者) 黃鈺茹zh_TW
dc.creator (作者) Huang, Yu-Juen_US
dc.date (日期) 2018en_US
dc.date.accessioned 6-八月-2018 18:09:46 (UTC+8)-
dc.date.available 6-八月-2018 18:09:46 (UTC+8)-
dc.date.issued (上傳時間) 6-八月-2018 18:09:46 (UTC+8)-
dc.identifier (其他 識別碼) G0105354028en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/119202-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 105354028zh_TW
dc.description.abstract (摘要) 本研究目的是在檢測時間序列資料是否隨時間遞增。本文中提出先估算資料的週期,再使用濾波器消除週期,再檢驗資料的遞增趨勢。在檢定遞增趨勢時,使用保序迴歸及逐段迴歸配適時間序列的趨勢,再以兩種趨勢的差距計算檢定統計量。本研究將所提出的方法應用於2015年北台灣的空氣品質資料,檢定結果發現大部分汙染物濃度並無遞增趨勢。zh_TW
dc.description.abstract (摘要) The purpose of this study is to test whether a time series has an increasing trend. This paper proposes to estimate the period of the time series first, then use a filter to eliminate the period, and then examine whether the filtered time series has an increasing trend. In examining the increasing trend, we use isotonic regression and piecewise regression to fit the trend of the time series, and then compute the difference between the fitted trends to obtain the test statistic. In this study, I apply the proposed method to the air quality data of North Taiwan in 2015. There are no increasing trends for most of the tested time series.en_US
dc.description.tableofcontents 1 緒論 1
     1.1 研究動機與目的 1
     2 文獻回顧 2
     2.1 保序迴歸以及PAVA演算法 2
     2.2 週期圖 3
     3 研究方法 6
     3.1 濾波器 6
     3.2 檢定方法 13
     3.2.1 檢視保序迴歸和逐段迴歸的配適值差異 13
     3.2.2 方法一、使用獨立資料檢驗方法 15
     3.2.3 方法二、使用有時間相關性的資料檢驗方法 17
     4 資料分析 20
     4.1 資料介紹 20
     4.2 資料處理 21
     4.3 檢測遺漏值片段中的週期 21
     4.3.1 K-W檢定(Kruskal–Wallis test)介紹與使用 21
     4.3.2 比較方法 22
     4.4 檢定資料遞增性 25
     5 結論、討論與建議 27
     表附錄 28
     圖附錄 29
     參考文獻 39
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105354028en_US
dc.subject (關鍵詞) 保序迴歸zh_TW
dc.subject (關鍵詞) 遞增性檢定zh_TW
dc.subject (關鍵詞) 濾波器zh_TW
dc.subject (關鍵詞) 週期圖zh_TW
dc.subject (關鍵詞) Isotonic regressionen_US
dc.subject (關鍵詞) PAVAen_US
dc.subject (關鍵詞) Filteren_US
dc.subject (關鍵詞) Periodogramen_US
dc.subject (關鍵詞) Examine the increasing trenden_US
dc.title (題名) 基於保序迴歸估計的資料遞增性檢定zh_TW
dc.title (題名) Testing for an increasing trend based on isotonic regressionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions: The Theory and Application of Isotonic Regression. New York : John Wiley & Sons.
     [2] Best MJ, Chakravarti N. (1990). Active Set Algorithms for Isotonic Regression; A Unifying Framework. Mathematical Programming, 47(1-3):425–439.
     [3] Brunk HB. (1955). Maximum Likelihood Estimates of Monotone Parameters. The Annals of Mathematical Statistics, 26(4):607–616.
     [4] de Leeuw, J., Hornik, K. and Mair, P. (2009). Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods .Journal of Statistical Software, 32(5):1–24.
     [5] Peter J. Brockwell and Richard A. Davis. (2002). Introduction to Time Series and Forecasting(2nd ed.). New York : Springer.
     [6] Piet Groeneboom and Geurt Jongbloed. (2010). Generalized continuous isotonic regression. Statistics and Probability Letters,80 (3-4):248-253.
     [7] Tibshirani, R., Hoefling, H. and Tibshirani, R. (2011). Nearly isotonic regression. Technometrics, 53(1):54–61.
     [8] Tim Robertson, F. T. Wright and R. L. Dykstra. (1988). Order Restricted Statistical Inference. New York : John Wiley & Sons.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.STAT.015.2018.B03-