學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 從文本語境中建構詞彙概念連結路徑之研究
A study on constructing lexical concept connection link based on context words
作者 羅郁雯
Lo, Yu-Wen
貢獻者 劉吉軒
Liu, Jyi-Shane
羅郁雯
Lo, Yu-Wen
關鍵詞 詞彙關聯
Word2vec
概念連結路徑
Word associations
Word2vec
Concept connection link
日期 2018
上傳時間 6-八月-2018 18:13:00 (UTC+8)
摘要 本研究使用Word2vec的自然語言處理技術,分析中研院平衡語料庫的文本資料,以Word2vec 的餘弦相似性作為計算連結路徑的基準,建構兩種詞彙概念連結路徑,探討不同詞彙關係的詞組在概念連結路徑上所呈現的結果。將兩個詞彙依照不同連結關係分成同義詞組,反義詞組,共現詞組以及隨機詞組四種類型的詞組,透過雙向概念連結路徑及詞彙相似連結路徑分析詞彙之間的概念連結路徑,找出各連結關係的詞組在連結路徑上產生的概念連結路徑,分析兩個詞彙在路徑中產生關聯性的各詞彙之涵義,並且比較各詞組的連結路徑結果以及路徑的差異性。期能提供語言研究和聯想學習另一種用以判定詞彙概念關係的方法。
This paper aims at providing the analytic results of relationship between two vocabulary which link by the meaning of words. By applying Natural Language Processing by Word2vec Model, analyze textual data in Sinica Corpus and constructing two lexical concept connection link base on cosine similarity of Word2vec. As the result, the conceptual linkage in the lexical semantic relation in different phrases be explored.According to different lexical semantic relation divided into four types of phrases: synonym phrases, antisense phrase, co-occurrence phrase and random phrase,and constructing two concept connection link: the Bilateral concept connection link and the Words similar connection link,find out the concept connection link by the phrase of different lexical semantic relation.Analyze the meaning of each word in concept connection link,and compare the result of the connection link of different lexical semantic relation phrase.Expected to provide language research and association learning another way to determine the lexical
     concept connection link based.
參考文獻 [1] 黃居仁,語意網、詞網與知識本體:淺談未來網路上的知識運籌,佛教圖書館館訊,第33 期:頁1-21,2003
     [2] 知網: http://www.keenage.com/zhiwang/c_zhiwang.html
     [3] 廣義知網: http://ehownet.iis.sinica.edu.tw/index.php
     [4] 林素朱,廣義知網的詞彙知識架構與語意表達,當代語言學,第2 期:頁 177-194,2013
     [5] T. Mikolov, K. Chen, G. Corrado, J. Dean, “Efficient Estimation of Word Representations in Vector Space ,”arXiv preprintarXiv:1301.3781,2013
     [6] 中央研究院現代漢語標記語料庫4.0:http://asbc.iis.sinica.edu.tw/
     [7] 中央研究院漢語料庫的內容與說明: http://asbc.iis.sinica.edu.tw/
     [8] CKIP 中文詞知識庫小組:http://ckip.iis.sinica.edu.tw/CKIP/conceptnet.htm
     [9] 廣義知網知識本體架構說明:http://ckip.iis.sinica.edu.tw/taxonomy/taxonomy-doc.htm
     [10] 陳克健、黃淑齡、施悅音、陳怡君,多層次概念定義與複雜關係表達-繁體字知網的新增架構漢語詞彙語義研究的現狀與發展趨勢,國際學術研討會,北京大學,2005
     [11] 李政儒、游基鑫、陳信希,廣義知網詞彙意見極性的預測,語言學期刊,17(2):頁21-36,2012
     [12] A. M. Collins, E. F. Loftus , “A Spreading-Activation Theory of Semantic Processing,”Psychological Review, 82, pp.407-428 ,1975
     [13] 林右敏,在圖文聯想遊戲中探討玩家的思考風格對聯想歷程的影響,新竹市,國立交通大學,2007
     [14] C. D. Holley, D. F. Dansereau, (Eds.), “Spatial Learning Strategies: Techniques,Applications, and Related Issues , ”New York: Academic Press ,1984
     [15] 林清山(譯),R.E.Mayer 著,教育心理學 認知取向(Educational psychology: A aognitive approach),台北市:遠流,1997
     [16] 余民寧,有意義的學習:概念構圖之研究,台北市:商鼎文化出版社,1997
     [17] 黃博聖、陳學志、黃鴻程、劉政宏,「詞彙聯想策略擴散性思考測驗」之編製,測驗學刊,第56 輯第2 期:頁153-177,2009
     [18] 黃博聖、陳學志、劉政宏,「中文詞彙遠距聯想測驗?之編製及其信、效度報告,測驗學刊,第56 輯第2 期:頁581-607,2012 (12)
     [19] 高照明,中文詞彙語意資料的整合及擷取:詞彙語意學的觀點,第十九屆自然語言與語音處理研討會論文集,台北,頁257-272 ,2007
     [20] 詞向量-LRWE 模型:https://www.cnblogs.com/chenbjin/p/7106139.html
     [21] 現代漢語?語義場 同義詞 反義詞:https://kknews.cc/zh-tw/education/ae98nln.html
     [22] 洪蘭(譯),George Miller 作,詞的學問—發現語言的科學,遠流,2002
     [23] 趙逢毅、鍾曉芳,基於字典釋義關聯方法的同義詞概念擷取:以《同義詞詞林(擴展版)》為例,中文計算語言學期刊,Vol.18,No.2,頁35-56,2013(6)
     [24] G. E. Hinton, “Learning distributed representations of concepts,”Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Vol.1 , 1986
     [25] 寧建飛、劉降珍,融合 Word2vec 與 TextRank 的關鍵詞抽取研究,現代圖書情報技術:頁20-27,2016 (6)
     [26] 熊富林、鄧怡豪、唐曉晟,Word2vec 的核心架構及其應用,南京師範大學學報(工程技術版),VoL.15 No.1,2015
     [27] TF-IDF 與餘弦相似性的應用(二)找出相似文章:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html
     [28] 教育部國語重編字典 :http://dict.revised.moe.edu.tw/cbdic/
     [29] J. Pennington, R .Socher, C. Manning, “Glove: Global vectors for word representation,”In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543, 2014.
     [30] Word2vec 中的數學原理詳解:http://blog.csdn.net/itplus/article/details/37969519
     [31] Xin Rong,“Word2vec Parameter Learning Explained,” arXiv preprintarXiv:1411.2738,2014.
     [32] Yoav Goldberg , Omer Levy , “Word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method,”arXiv preprint arXiv:1402.3722,2014
     [33] 向量能蘊含多少單詞本身的意思信息?https://www.getit01.com
     [34] 維基百科:http://zh.wikipedia.org/
描述 碩士
國立政治大學
資訊科學系
104753042
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104753042
資料類型 thesis
dc.contributor.advisor 劉吉軒zh_TW
dc.contributor.advisor Liu, Jyi-Shaneen_US
dc.contributor.author (作者) 羅郁雯zh_TW
dc.contributor.author (作者) Lo, Yu-Wenen_US
dc.creator (作者) 羅郁雯zh_TW
dc.creator (作者) Lo, Yu-Wenen_US
dc.date (日期) 2018en_US
dc.date.accessioned 6-八月-2018 18:13:00 (UTC+8)-
dc.date.available 6-八月-2018 18:13:00 (UTC+8)-
dc.date.issued (上傳時間) 6-八月-2018 18:13:00 (UTC+8)-
dc.identifier (其他 識別碼) G0104753042en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/119215-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 104753042zh_TW
dc.description.abstract (摘要) 本研究使用Word2vec的自然語言處理技術,分析中研院平衡語料庫的文本資料,以Word2vec 的餘弦相似性作為計算連結路徑的基準,建構兩種詞彙概念連結路徑,探討不同詞彙關係的詞組在概念連結路徑上所呈現的結果。將兩個詞彙依照不同連結關係分成同義詞組,反義詞組,共現詞組以及隨機詞組四種類型的詞組,透過雙向概念連結路徑及詞彙相似連結路徑分析詞彙之間的概念連結路徑,找出各連結關係的詞組在連結路徑上產生的概念連結路徑,分析兩個詞彙在路徑中產生關聯性的各詞彙之涵義,並且比較各詞組的連結路徑結果以及路徑的差異性。期能提供語言研究和聯想學習另一種用以判定詞彙概念關係的方法。zh_TW
dc.description.abstract (摘要) This paper aims at providing the analytic results of relationship between two vocabulary which link by the meaning of words. By applying Natural Language Processing by Word2vec Model, analyze textual data in Sinica Corpus and constructing two lexical concept connection link base on cosine similarity of Word2vec. As the result, the conceptual linkage in the lexical semantic relation in different phrases be explored.According to different lexical semantic relation divided into four types of phrases: synonym phrases, antisense phrase, co-occurrence phrase and random phrase,and constructing two concept connection link: the Bilateral concept connection link and the Words similar connection link,find out the concept connection link by the phrase of different lexical semantic relation.Analyze the meaning of each word in concept connection link,and compare the result of the connection link of different lexical semantic relation phrase.Expected to provide language research and association learning another way to determine the lexical
     concept connection link based.
en_US
dc.description.tableofcontents 第一章 緒論 1
     1.1 研究背景 1
     1.2 研究動機與目的 2
     1.3 研究資料 3
     1.4 論文架構 4
     第二章 背景知識和相關技術 5
     2.1 知網 5
     2.2 廣義知網 6
     2.3 概念連結 8
     2.4 詞彙的語意關係 11
     2.5 Word2vec 13
     2.6 小結 17
     第三章 研究方法 18
     3.1 詞組選擇 19
     3.2 建立概念連結 21
     第四章 實驗結果和分析 26
     4.1 雙向概念連結路徑結果 26
     4.1.1 同義詞組雙向概念連結路徑結果之分析 27
     4.1.2 反義詞組雙向概念連結路徑結果之分析 32
     4.1.3 共現詞組雙向概念連結路徑結果之分析 38
     4.1.4 隨機詞組雙向概念連結路徑結果之分析 42
     4.2 雙向概念連結路徑長度分布比較 47
     4.3 詞彙相似連結路徑結果分析 53
     4.3.1 詞彙相似連結路徑結果之分析 53
     4.3.2 同義詞無法連結的原因 57
     4.3.3 共現詞無法連結的原因 59
     4.4 小結 62
     第五章 結論 64
     Reference 66
     附錄 69
     附錄一 實驗詞組 69
     附錄二 雙向概念連結路徑 82
     附錄三 詞彙相似連結路徑 123
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104753042en_US
dc.subject (關鍵詞) 詞彙關聯zh_TW
dc.subject (關鍵詞) Word2veczh_TW
dc.subject (關鍵詞) 概念連結路徑zh_TW
dc.subject (關鍵詞) Word associationsen_US
dc.subject (關鍵詞) Word2vecen_US
dc.subject (關鍵詞) Concept connection linken_US
dc.title (題名) 從文本語境中建構詞彙概念連結路徑之研究zh_TW
dc.title (題名) A study on constructing lexical concept connection link based on context wordsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] 黃居仁,語意網、詞網與知識本體:淺談未來網路上的知識運籌,佛教圖書館館訊,第33 期:頁1-21,2003
     [2] 知網: http://www.keenage.com/zhiwang/c_zhiwang.html
     [3] 廣義知網: http://ehownet.iis.sinica.edu.tw/index.php
     [4] 林素朱,廣義知網的詞彙知識架構與語意表達,當代語言學,第2 期:頁 177-194,2013
     [5] T. Mikolov, K. Chen, G. Corrado, J. Dean, “Efficient Estimation of Word Representations in Vector Space ,”arXiv preprintarXiv:1301.3781,2013
     [6] 中央研究院現代漢語標記語料庫4.0:http://asbc.iis.sinica.edu.tw/
     [7] 中央研究院漢語料庫的內容與說明: http://asbc.iis.sinica.edu.tw/
     [8] CKIP 中文詞知識庫小組:http://ckip.iis.sinica.edu.tw/CKIP/conceptnet.htm
     [9] 廣義知網知識本體架構說明:http://ckip.iis.sinica.edu.tw/taxonomy/taxonomy-doc.htm
     [10] 陳克健、黃淑齡、施悅音、陳怡君,多層次概念定義與複雜關係表達-繁體字知網的新增架構漢語詞彙語義研究的現狀與發展趨勢,國際學術研討會,北京大學,2005
     [11] 李政儒、游基鑫、陳信希,廣義知網詞彙意見極性的預測,語言學期刊,17(2):頁21-36,2012
     [12] A. M. Collins, E. F. Loftus , “A Spreading-Activation Theory of Semantic Processing,”Psychological Review, 82, pp.407-428 ,1975
     [13] 林右敏,在圖文聯想遊戲中探討玩家的思考風格對聯想歷程的影響,新竹市,國立交通大學,2007
     [14] C. D. Holley, D. F. Dansereau, (Eds.), “Spatial Learning Strategies: Techniques,Applications, and Related Issues , ”New York: Academic Press ,1984
     [15] 林清山(譯),R.E.Mayer 著,教育心理學 認知取向(Educational psychology: A aognitive approach),台北市:遠流,1997
     [16] 余民寧,有意義的學習:概念構圖之研究,台北市:商鼎文化出版社,1997
     [17] 黃博聖、陳學志、黃鴻程、劉政宏,「詞彙聯想策略擴散性思考測驗」之編製,測驗學刊,第56 輯第2 期:頁153-177,2009
     [18] 黃博聖、陳學志、劉政宏,「中文詞彙遠距聯想測驗?之編製及其信、效度報告,測驗學刊,第56 輯第2 期:頁581-607,2012 (12)
     [19] 高照明,中文詞彙語意資料的整合及擷取:詞彙語意學的觀點,第十九屆自然語言與語音處理研討會論文集,台北,頁257-272 ,2007
     [20] 詞向量-LRWE 模型:https://www.cnblogs.com/chenbjin/p/7106139.html
     [21] 現代漢語?語義場 同義詞 反義詞:https://kknews.cc/zh-tw/education/ae98nln.html
     [22] 洪蘭(譯),George Miller 作,詞的學問—發現語言的科學,遠流,2002
     [23] 趙逢毅、鍾曉芳,基於字典釋義關聯方法的同義詞概念擷取:以《同義詞詞林(擴展版)》為例,中文計算語言學期刊,Vol.18,No.2,頁35-56,2013(6)
     [24] G. E. Hinton, “Learning distributed representations of concepts,”Proceedings of the Eighth Annual Conference of the Cognitive Science Society, Vol.1 , 1986
     [25] 寧建飛、劉降珍,融合 Word2vec 與 TextRank 的關鍵詞抽取研究,現代圖書情報技術:頁20-27,2016 (6)
     [26] 熊富林、鄧怡豪、唐曉晟,Word2vec 的核心架構及其應用,南京師範大學學報(工程技術版),VoL.15 No.1,2015
     [27] TF-IDF 與餘弦相似性的應用(二)找出相似文章:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html
     [28] 教育部國語重編字典 :http://dict.revised.moe.edu.tw/cbdic/
     [29] J. Pennington, R .Socher, C. Manning, “Glove: Global vectors for word representation,”In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp 1532–1543, 2014.
     [30] Word2vec 中的數學原理詳解:http://blog.csdn.net/itplus/article/details/37969519
     [31] Xin Rong,“Word2vec Parameter Learning Explained,” arXiv preprintarXiv:1411.2738,2014.
     [32] Yoav Goldberg , Omer Levy , “Word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-Embedding Method,”arXiv preprint arXiv:1402.3722,2014
     [33] 向量能蘊含多少單詞本身的意思信息?https://www.getit01.com
     [34] 維基百科:http://zh.wikipedia.org/
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.CS.006.2018.B02-