學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 CRISPR-Cas9基因編輯技術專利之研究- 以BROAD v. UC-Berkley案為例
The study of CRISPR-Cas9 gene editing technology patent- A case study of BROAD v. UC-Berkley
作者 張博淳
Chang, Po-Chun
貢獻者 馮震宇
Fong, Jerry G.
張博淳
Chang, Po-Chun
關鍵詞 基因編輯
生物技術
生技產業
CRISPR-Cas9
專利衝突
專利聯盟
商業模式
Gene editing
Biotechnology
Biotech industry
CRISPR-Cas9
Interference proceeding
Patent pool
Business model
日期 2018
上傳時間 29-八月-2018 15:56:29 (UTC+8)
摘要 隨著近代分子生物學及遺傳工程技術不斷發展,科學界已逐步將基因工程提升到基因編輯技術。基因編輯技術可標靶特定DNA序列,並對序列進行基因的剔除及加入,實現對目標基因進行編輯的目的。在現今三大主流基因編輯技術中,CRISPR-Cas9系統因製作簡單且精準度高,被認為是基因編輯技術中最具潛力的一種,因此學術界及產業界也積極發展相關技術及申請專利。
     本論文介紹基因編輯技術,整理CRISPR-Cas9發展之歷程,歸納此技術與其他技術之差異及優勢,以及最新的產業應用性及市場預測。CRISPR-Cas9專利兩大領頭羊為Jennifer Doudna領軍的UC-Berkley團隊及美國麻省理工學院張鋒領軍的BROAD研究所團隊。UC於2015年向USPTO提出專利衝突程序,主張BROAD專利與其專利有重複之處,並應予以撤銷。PTAB於2017年作出關鍵決定,認定二者專利並不存在衝突,因此張鋒團隊可保有其專利。本論文在美國專利適格性之最新判斷基準下,針對二者專利請求項進行專利適格性之分析,並討論PTAB對於此案新穎性及非顯而易見性之專利要件審理依據。
     PTAB的決定並不代表最終的結果,此案後續發展對於未來學術界乃至於生物技術產業界都有舉足輕重的影響。本論文建議未來應嚴謹審查生物技術專利請求項,免除因訴訟而引發之專利不確定性,延緩產業發展。在商業面上,本論文嘗試整合過去生物技術成功商業化案例關鍵要素及探討BROAD所創建之CRISPR專利聯盟授權模式,以作為此技術未來商業發展及技術推廣之方向。期待CRISPR-Cas9未來進入消費者市場後可提升人類生活品質並創造基因編輯技術之蓬勃發展。
With the continuous development of modern molecular biology and genetic engineering technology, the scientific community has gradually upgraded genetic engineering to gene editing technology. Gene editing technology can target specific DNA sequences, and achieve the purpose of editing target gene by eliminating and adding genes to the sequence. Among the three current major gene editing technologies, CRISPR-Cas9 system is considered to be the most promising of genetic editing technology because of its simplicity and high precision. Therefore, academics and industry are actively developing related technologies and applying patents.
     This thesis introduces the development and advantages of CRISPR-Cas9 gene editing, as well as its latest industrial applicability and market forecast. The two leading organizations of CRISPR-Cas9 patent are UC-Berkley team led by Jennifer Doudna and BROAD Institute team led by Zhang Feng of the Massachusetts Institute of Technology. In 2015, UC filed an interference proceeding to USPTO, claiming that BROAD’s patent has interfered with UC’s patent and should be revoked. PTAB made a decision in 2017 and concluded that there is no interfernce-in-fact between two patents, so the Zhang Feng team can retain its patents. Under the latest judgment criteria of US patent eligibility, this paper analyzes the patent eligibility of the two patent claims and discusses the basis for PTAB`s patentability of the novelty and non-obviousness of the case.
     The decision of PTAB does not represent the final result. The subsequent development of this case will have a significant impact on the future academic community and even the biotechnology industry. This paper suggests that the biotechnology patent claims should be rigorously reviewed in the future, exempting patent uncertainty caused by litigation and delaying industrial development. On the commercial side, this paper attempts to integrate the key elements of the successful commercialization of biotechnology in the past and discuss the licensing model of CRISPR patent-pool created by BROAD for reference of future business development and technology promotion of this technology. With the future entry of CRISPR-Cas9 to the consumer market, hope it will enhance the quality of human life and create a flourishing development of genetic editing technology.
參考文獻 一、中文參考資料
     (一)期刊
     1.尹守信,淺析美國專利法上之新穎性要件,智慧財產權月刊,第78期,頁52-70,2005年6月。
     2.尹守信,淺析美國專利法上之非顯而易知性要件,智慧財產權月刊,84期,頁128-146,2005年12月。
     3.李素華、謝銘洋,生技醫療產業所面對新興專利課題—基因檢測、細胞治療與基因治療之專利保護與權利限制,台灣科技法律與政策論叢,4卷2期,頁49-100,2007年3月。
     4.徐弘光,台灣專利聯盟(Patent Pool)的可行性探討--以國際產業標準的營運模式為例,政大智慧財產評論,5卷1期,頁65-100,2007年4月。
     (二)書籍
     1.馮震宇,智慧財產權發展趨勢與重要問題研究,2版,2011年1月。
     2.楊智傑,美國專利法與重要判決,2015年10月。
     二、英文參考資料
     (一) Cases
     1.The BROAD Institute, Inc. et al. v. the Regents of the University of California, Patent Interference No. 106,048 (PTAB 2017).
     2.Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127 (1948).
     3.Diamond v. Chakrabarty, 447 U.S. 303 (1980).
     4.Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289, (2012).
     5.Ass’n for Molecular Pathology v. Myriad Genetics, Inc., 133 S.Ct. 2107 (2013).
     6.Ariosa Diagnostics, Inc. v. Sequenom, Inc., 788 F.3d, 1371 (Fed. Cir. 2015).
     7.Yorkey v. Diab, 605 F.3d 1297, 1300 (Fed. Cir. 2010).
     8.Noelle v. Lederman, 355 F.3d 1343, 1352 (Fed. Cir. 2004).
     9.Atofina v. Great Lakes Chem. Corp. 441 F.3d 991, (Fed. Cir. 2006).
     10.Graham v. John Deere Co., 383 U.S. 1 (1966).
     11.United States v. U.S. Gypsum Co., 333 U.S. 6 364, 395–96 (1948).
     12.Cucuras v. Sec`y of Dep`t of 9 Health & Human Servs., 993 F.2d 1525, 1528 (Fed. Cir. 1993).
     13.KSR Int`l Co. v. Teleflex Inc., 550 U.S. 398, 421 (2007).
     14.Nautilus v. Biosig, 134 S. Ct. 2120 (2014).
     (二)書籍
     1.Feldman, Maryann, et al., (2007). Lessons from the Commercialization of the Cohen-Boyer Patents: The Stanford University Licensing Program, Handbook of best practices.
     2.O`Hamilton, Joan (1988). A biotech hit and a bold way to profit from it. Business Week.
     3.Osterwalder Alexander & Pigneur Yves, Business Model Generation: A Handbook For Visionaries, Game Changers, And Challengers, Hoboken, NJ: John Wiley and Sons (2010).
     4.Rabinow, Paul (1996). Making PCR: A Story of Biotechnology. Chicago , University of Chicago Press.
     (三)期刊論文
     1.Baringaga Marcia, Biotech nightmare: does Cetus own PCR? 251 Science 739 (1991).
     2.Barrangou, Rodolphe et al., Crispr Provides Acquired Resistance against Viruses in Prokaryotes, 315 Science 1709 (2007).
     3.Beck, Shane, Do you have a license?: products licensed for PCR in research applications, 12 The Scientist 21 (1998).
     4.Bonas, Ulla et al., Genetic and Structural Characterization of the Avirulence Gene Avrbs3 from Xanthomonas Campestris Pv. Vesicatoria, 218 Mol. Gen. Genet. 127 (1989).
     5.Brouns, Stan J.J. et al., Small Crispr Rnas Guide Antiviral Defense in Prokaryotes, 321 Science 960 (2008).
     6.Carroll, Dana, Genome Engineering with Zinc-Finger Nucleases, 188 Genetics 773 (2011).
     7.Carroll, Dana, A Crispr Approach to Gene Targeting, 20 Mol. Ther. 1658 (2012).
     8.Carroll, Kyler J. et al., A Mouse Model for Adult Cardiac-Specific Gene Deletion with Crispr/Cas9, 113 Proc. Natl. Acad. Sci. U S A 338 (2016).
     9.Cloney, Ross, Patent Law and Genome Engineering: A Short Guide to a Rapidly Changing Landscape, 24 Mol. Ther. 419 (2016).
     10.Cohen, Stanley N. et al., Construction of Biologically Functional Bacterial Plasmids in Vitro, 70 Proc. Natl. Acad. Sci. U S A 3240 (1973).
     11.Deltcheva, Elitza et al., Crispr Rna Maturation by Trans-Encoded Small Rna and Host Factor Rnase III, 471 Nature 602 (2011).
     12.Esvelt Kevin M. et al., Concerning RNA-guided gene drives for the alteration of wild populations, Elife (2014).
     13.Feldman, Maryann et al., Lessons from the Commercialization of the Cohen-Boyer Patents: The Stanford University Licensing Program, Handbook of best practices 1797, 1797-1807 (2007).
     14.Fisken, Jane & Rutherford, Jan, Business models and investment trends in the biotechnology industry in Europe, 8 J. of Comm. Biotechnology 191, 192 (2002).
     15.Fore, Joe et al., The effects of business practices, licensing, and intellectual property on development and dissemination of the polymerase chain reaction: case study, 1 J. Biomed. Discov. Collab. 1 (2006).
     16.Gantz, Valentino M. et al., Highly Efficient Cas9-Mediated Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles Stephensi, 112 Proc. Natl. Acad. Sci. U S A 6736 (2015).
     17.Gordon, Jon W. et al., Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA, 77 Proc. Natl. Acad. Sci. U S A 7380 (1980).
     18.Ishino, Yoshizumi et al., Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia Coli, and Identification of the Gene Product, 169 J. Bacteriol. 5429 (1987).
     19.Jansen, Ruud et al., Identification of Genes That Are Associated with DNA Repeats in Prokaryotes, 43 Mol. Microbiol. 1565 (2002).
     20.Jinek, Martin et al, A Programmable Dual-Rna-Guided DNA Endonuclease in Adaptive Bacterial Immunity, 337 Science 816 (2012).
     21.Kaminski, Rafal et al., Excision of Hiv-1 DNA by Gene Editing: A Proof-of-Concept in Vivo Study, 23 Gene Ther. 690 (2016).
     22.Ku, Deborah (2017). The Patentability of the Crispr-Cas9 Genome Editing Tool, 16 Chi. -Kent J. Intell. Prop. 408.
     23.Garber, Ken, Homestead 2000: The Genome, SIGNALS (2000).
     24.Minssen, Timo et al., Clearing a way through the CRISPR patent jungle, Life Sciences Intellectual Property Review, (2018).
     25.Mojica, Francisco et al., Transcription at Different Salinities of Haloferax Mediterranei Sequences Adjacent to Partially Modified Psti Sites, 9 Mol. Microbiol. 613 (1993).
     26.Mojica, Francisco et al., Biological Significance of a Family of Regularly Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria, 36 Mol. Microbiol. 244 (2000).
     27.Paquet, Dominik et al., Efficient Introduction of Specific Homozygous and Heterozygous Mutations Using Crispr/Cas9, 533 Nature 125 (2016).
     28.Pardee, Keith et al., Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components, 165 Cell 1255 (2016).
     29.Rodriguez Eduardo, Ethical Issues in Genome Editing using Crispr/Cas9 System, 7 J. Clin. Res. Bioeth. 266 (2016).
     30.Soyk, Sebastian et al., Variation in the Flowering Gene Self Pruning 5g Promotes Day-Neutrality and Early Yield in Tomato, 49 Nat. Genet. 162 (2017).
     31.Sun M, A one-stop shop for gene-splicing patents. Stanford and University of California officials propose a novel way to license patents to biotechnology companies, 219 Science1302, 1302-3 (1983).
     32.Tabebordbar, Mohammadsharif et al., In Vivo Gene Editing in Dystrophic Mouse Muscle and Muscle Stem Cells, 351 Science 407 (2016).
     33.Waltz, Emily, Gene-Edited Crispr Mushroom Escapes Us Regulation, 532 Nature 293 (2016).
     34.Watson, James D. & Francis H. Crick, Molecular Structure of Nucleic Acids; a Structure for Deoxyribose Nucleic Acid, 171 Nature 737 (1953).
     三、網際網路
     1.BROAD Institute, Information about licensing CRISPR genome editing systems, available at https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi (last visited:Jul/10/2018).
     2.ERS Genomics, CRISPR Therapeutics, Intellia Therapeutics, Caribou Biosciences and ERS Genomics announce appellate brief seeking reversal of U.S. Patent Board Decision on CRISPR/Cas9 gene editing, available at http://www.ersgenomics.com/2017-11-22%20UCB%20Brief%20(Public).pdf (last visited: Jan/15/2018).
     3.Forbes, How Much Is a CRISPR Patent License Worth? available at https://www.forbes.com/sites/jacobsherkow/2017/02/21/how-much-is-a-crispr-patent-license-worth/#3e573ae66b77 (last visited: Feb/23/2018).
     4.Global Market Insights Inc., Gene Editing Market size was valued at over USD 2.17 billion in 2015 and will grow at over 14% CAGR from 2016 to 2024, available at https://www.gminsights.com/industry-analysis/gene-editing-market (last visited: Feb/23/2018).
     5.Harvard University, CRISPR: A game-changing genetic engineering technique, available at http://sitn.hms.harvard.edu/flash/2014/crispr-a-game-changing-genetic-engineering-technique/ (last visited:Nov/10/2017).
     6.Inkwood research, ASIA PACIFIC CRISPR MARKET FORECAST 2018-2026, available at https://www.inkwoodresearch.com/reports/asia-pacific-crispr-market/#report-summary (last visited: Feb/23/2018).
     7.Jens Boch, Generation of resistant rice by targeted genome engineering using TALENs, available at http://www.molekulare-biowissenschaften.uni-halle.de/molekulare-biowissenschaften/projekte-forschungsschwerpunkt/2656980_2657144/jens-boch/ (last visited:Nov/28/2017).
     8.Labiotech, History of Biotech: How the “First” Biotech Patent Generated Millions, available at https://labiotech.eu/making-dollars-out-of-the-recombinant-dna-biotech-patents/ (last visited: Feb/01/2018).
     9.National Institutes of Health, What is a gene, available at https://ghr.nlm.nih.gov/primer/basics/gene (last visited: Dec/14/2017).
     10.National Institutes of Health, What is a genome, available at https://ghr.nlm.nih.gov/primer/hgp/genome (last visited: Dec/14/2017).
     11.National Institutes of Health, A biotherapeutic CRISPR-delivery platform to eradicate Clostridium difficile, available at http://grantome.com/grant/NIH/R21-AI121662-01 (last visited:Nov/28/2017).
     12.Pugatch Consilium, BCI 2017 Report and Results, available at http://www.pugatch-consilium.com/?page_id=1589#BCI_2017 (last visited:Jul/10/2018).
     13.Sangamo Therapeutic, Kite, a Gilead Company, And Sangamo Therapeutics Announce Collaboration To Develop Next-Generation Engineered Cell Therapies For The Treatment Of Cancer, available at https://investor.sangamo.com/press-releases/detail/397/kite-a-gilead-company-and-sangamo-therapeutics-announce (last visited: Apr/16/2018).
     14.USPTO, Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription, available at http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20140068797.PGNR. (last visited: Nov/11/2017).
     15.USPTO, CRISPR-Cas systems and methods for altering expression of gene products, available at http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/8945839 (last visited: Nov/11/2017).
     16.University of Pennsylvania, FDA Approves CAR T Therapy for Large B-Cell Lymphoma Developed at University of Pennsylvania, available at https://www.pennmedicine.org/news/news-releases/2018/may/fda-approves-car-t-therapy-for-large-b-cell-lymphoma-developed-at-university-of-pennsylvania (last visited : May/20/2018).
     17.科技部,GRB政府研究資訊系統,參見於https://www.grb.gov.tw/index (最後瀏覽日:2018年4月28日)。
     18.國家圖書館,臺灣博碩士論文知識加值系統,參見於https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=wC67d0/webmge?webmgemode=graduate&mode=advance (最後瀏覽日:2018年4月28日)。
     19.經濟部生技醫藥產業發展推動小組,2017生物技術產業簡介,參見於https://www.biopharm.org.tw/download/2017生物技術產業簡介.pdf (最後瀏覽日:2018年5月11日)。
     20.經濟部智慧財產局,中華民國專利資訊檢索系統,參見於 https://twpat.tipo.gov.tw/ (最後瀏覽日:2018年4月28日)。
     21.資誠聯合會計師事務所,生技產業之IP相關議題,參見於https://www.pwc.tw/zh/services/legal/knowledge-center/ip-bulletin/ip-newsletter/assets/ip-feature-201306.pdf (最後瀏覽日:2018年3月15日)。
描述 碩士
國立政治大學
法學院碩士在職專班
103961030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0103961030
資料類型 thesis
dc.contributor.advisor 馮震宇zh_TW
dc.contributor.advisor Fong, Jerry G.en_US
dc.contributor.author (作者) 張博淳zh_TW
dc.contributor.author (作者) Chang, Po-Chunen_US
dc.creator (作者) 張博淳zh_TW
dc.creator (作者) Chang, Po-Chunen_US
dc.date (日期) 2018en_US
dc.date.accessioned 29-八月-2018 15:56:29 (UTC+8)-
dc.date.available 29-八月-2018 15:56:29 (UTC+8)-
dc.date.issued (上傳時間) 29-八月-2018 15:56:29 (UTC+8)-
dc.identifier (其他 識別碼) G0103961030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/119764-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 法學院碩士在職專班zh_TW
dc.description (描述) 103961030zh_TW
dc.description.abstract (摘要) 隨著近代分子生物學及遺傳工程技術不斷發展,科學界已逐步將基因工程提升到基因編輯技術。基因編輯技術可標靶特定DNA序列,並對序列進行基因的剔除及加入,實現對目標基因進行編輯的目的。在現今三大主流基因編輯技術中,CRISPR-Cas9系統因製作簡單且精準度高,被認為是基因編輯技術中最具潛力的一種,因此學術界及產業界也積極發展相關技術及申請專利。
     本論文介紹基因編輯技術,整理CRISPR-Cas9發展之歷程,歸納此技術與其他技術之差異及優勢,以及最新的產業應用性及市場預測。CRISPR-Cas9專利兩大領頭羊為Jennifer Doudna領軍的UC-Berkley團隊及美國麻省理工學院張鋒領軍的BROAD研究所團隊。UC於2015年向USPTO提出專利衝突程序,主張BROAD專利與其專利有重複之處,並應予以撤銷。PTAB於2017年作出關鍵決定,認定二者專利並不存在衝突,因此張鋒團隊可保有其專利。本論文在美國專利適格性之最新判斷基準下,針對二者專利請求項進行專利適格性之分析,並討論PTAB對於此案新穎性及非顯而易見性之專利要件審理依據。
     PTAB的決定並不代表最終的結果,此案後續發展對於未來學術界乃至於生物技術產業界都有舉足輕重的影響。本論文建議未來應嚴謹審查生物技術專利請求項,免除因訴訟而引發之專利不確定性,延緩產業發展。在商業面上,本論文嘗試整合過去生物技術成功商業化案例關鍵要素及探討BROAD所創建之CRISPR專利聯盟授權模式,以作為此技術未來商業發展及技術推廣之方向。期待CRISPR-Cas9未來進入消費者市場後可提升人類生活品質並創造基因編輯技術之蓬勃發展。
zh_TW
dc.description.abstract (摘要) With the continuous development of modern molecular biology and genetic engineering technology, the scientific community has gradually upgraded genetic engineering to gene editing technology. Gene editing technology can target specific DNA sequences, and achieve the purpose of editing target gene by eliminating and adding genes to the sequence. Among the three current major gene editing technologies, CRISPR-Cas9 system is considered to be the most promising of genetic editing technology because of its simplicity and high precision. Therefore, academics and industry are actively developing related technologies and applying patents.
     This thesis introduces the development and advantages of CRISPR-Cas9 gene editing, as well as its latest industrial applicability and market forecast. The two leading organizations of CRISPR-Cas9 patent are UC-Berkley team led by Jennifer Doudna and BROAD Institute team led by Zhang Feng of the Massachusetts Institute of Technology. In 2015, UC filed an interference proceeding to USPTO, claiming that BROAD’s patent has interfered with UC’s patent and should be revoked. PTAB made a decision in 2017 and concluded that there is no interfernce-in-fact between two patents, so the Zhang Feng team can retain its patents. Under the latest judgment criteria of US patent eligibility, this paper analyzes the patent eligibility of the two patent claims and discusses the basis for PTAB`s patentability of the novelty and non-obviousness of the case.
     The decision of PTAB does not represent the final result. The subsequent development of this case will have a significant impact on the future academic community and even the biotechnology industry. This paper suggests that the biotechnology patent claims should be rigorously reviewed in the future, exempting patent uncertainty caused by litigation and delaying industrial development. On the commercial side, this paper attempts to integrate the key elements of the successful commercialization of biotechnology in the past and discuss the licensing model of CRISPR patent-pool created by BROAD for reference of future business development and technology promotion of this technology. With the future entry of CRISPR-Cas9 to the consumer market, hope it will enhance the quality of human life and create a flourishing development of genetic editing technology.
en_US
dc.description.tableofcontents 第一章 緒論 1
     第一節 研究動機及研究目的 1
     第二節 研究方法 3
     第三節 論文章節架構 4
     第二章 基因編輯與CRISPR-Cas9之介紹 6
     第一節 基因與基因體 6
     第二節 基因編輯市場主流技術 7
     第一項 ZFN鋅手指核酸內切酶 8
     第二項 TALENs轉殖似轉錄激活因子蛋白核酸酶 10
     第三項 CRISPR-Cas9技術介紹 12
     第三節 CRISPR技術應用範圍及未來市場預測 16
     第一項 CRISPR-Cas9在人類生物體的應用 18
     第二項 CRISPR-Cas9在非人生物體的應用 22
     第三項 CRISPR-Cas9應用市場預測 24
     第四節 CRISPR-Cas9基因編輯我國發展現況 27
     第一項 我國生技產業營運現況 27
     第二項 CRISPR-Cas9於我國之補助計畫及專利申請 29
     第三章 基因之專利適格性與美國歷年關於基因專利適格性之重要判決 33
     第一節 專利適格性與其發展 33
     第二節 Funk Bros. Seed Co. v. Kalo Inoculant Co.案 34
     第三節 Diamond v. Chakrabarty案 35
     第四節 Mayo v. Prometheus案 36
     第五節 Molecular Pathology v. Myriad Genetics案 38
     第六節 Ariosa Diagnostics, Inc. v. Sequenom, Inc.案 39
     第七節 CRISPR-Cas9基因編輯技術之專利適格性 40
     第四章 BROAD v. THE UNIVERSITY OF CALIFORNIA之緣起及發展 44
     第一節 CRISPR-Cas9基因編輯專利爭戰之緣起 44
     第二節 UC向USPTO提出專利衝突程序 45
     第三節 PTAB決定之重點分析 48
     第一項 No Anticipation UC請求項未先佔BROAD請求項 49
     第二項 若將UC視為先前技術,其未提供「顯而易見性」 50
     第三項 小結 57
     第五章 Recombinant DNA與PCR成功商業化案例看CRISPR-Cas9之可能商業模式 58
     第一節 案例研究-Recombinant DNA重組技術 58
     第一項 Cohen-Boyer專利由史丹佛大學技轉辦公室一站式管理 58
     第二項 史丹佛大學技轉辦公室對於Cohen-Boyer之專利授權模式 59
     第三項 小結 61
     第二節 案例研究-PCR聚合酶連鎖反應 63
     第一項 Cetus積極發展策略夥伴關係 63
     第二項 小結 65
     第三節 CRISPR專利共享平台-MPEG LA一站式專利聯盟授權模式 67
     第四節 CRISPR可行之商業模式探討 70
     第一項 分析CRISPR-Cas9基因編輯商業模式要素 72
     第二項 小結 74
     第六章 結論與建議 77
     第一節 結論 77
     第二節 建議 78
     第一項 未來應嚴謹審查生物技術專利請求項要件 78
     第二項 制定先進生物技術之發展策略 81
     參考文獻 84
zh_TW
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0103961030en_US
dc.subject (關鍵詞) 基因編輯zh_TW
dc.subject (關鍵詞) 生物技術zh_TW
dc.subject (關鍵詞) 生技產業zh_TW
dc.subject (關鍵詞) CRISPR-Cas9zh_TW
dc.subject (關鍵詞) 專利衝突zh_TW
dc.subject (關鍵詞) 專利聯盟zh_TW
dc.subject (關鍵詞) 商業模式zh_TW
dc.subject (關鍵詞) Gene editingen_US
dc.subject (關鍵詞) Biotechnologyen_US
dc.subject (關鍵詞) Biotech industryen_US
dc.subject (關鍵詞) CRISPR-Cas9en_US
dc.subject (關鍵詞) Interference proceedingen_US
dc.subject (關鍵詞) Patent poolen_US
dc.subject (關鍵詞) Business modelen_US
dc.title (題名) CRISPR-Cas9基因編輯技術專利之研究- 以BROAD v. UC-Berkley案為例zh_TW
dc.title (題名) The study of CRISPR-Cas9 gene editing technology patent- A case study of BROAD v. UC-Berkleyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 一、中文參考資料
     (一)期刊
     1.尹守信,淺析美國專利法上之新穎性要件,智慧財產權月刊,第78期,頁52-70,2005年6月。
     2.尹守信,淺析美國專利法上之非顯而易知性要件,智慧財產權月刊,84期,頁128-146,2005年12月。
     3.李素華、謝銘洋,生技醫療產業所面對新興專利課題—基因檢測、細胞治療與基因治療之專利保護與權利限制,台灣科技法律與政策論叢,4卷2期,頁49-100,2007年3月。
     4.徐弘光,台灣專利聯盟(Patent Pool)的可行性探討--以國際產業標準的營運模式為例,政大智慧財產評論,5卷1期,頁65-100,2007年4月。
     (二)書籍
     1.馮震宇,智慧財產權發展趨勢與重要問題研究,2版,2011年1月。
     2.楊智傑,美國專利法與重要判決,2015年10月。
     二、英文參考資料
     (一) Cases
     1.The BROAD Institute, Inc. et al. v. the Regents of the University of California, Patent Interference No. 106,048 (PTAB 2017).
     2.Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127 (1948).
     3.Diamond v. Chakrabarty, 447 U.S. 303 (1980).
     4.Mayo Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289, (2012).
     5.Ass’n for Molecular Pathology v. Myriad Genetics, Inc., 133 S.Ct. 2107 (2013).
     6.Ariosa Diagnostics, Inc. v. Sequenom, Inc., 788 F.3d, 1371 (Fed. Cir. 2015).
     7.Yorkey v. Diab, 605 F.3d 1297, 1300 (Fed. Cir. 2010).
     8.Noelle v. Lederman, 355 F.3d 1343, 1352 (Fed. Cir. 2004).
     9.Atofina v. Great Lakes Chem. Corp. 441 F.3d 991, (Fed. Cir. 2006).
     10.Graham v. John Deere Co., 383 U.S. 1 (1966).
     11.United States v. U.S. Gypsum Co., 333 U.S. 6 364, 395–96 (1948).
     12.Cucuras v. Sec`y of Dep`t of 9 Health & Human Servs., 993 F.2d 1525, 1528 (Fed. Cir. 1993).
     13.KSR Int`l Co. v. Teleflex Inc., 550 U.S. 398, 421 (2007).
     14.Nautilus v. Biosig, 134 S. Ct. 2120 (2014).
     (二)書籍
     1.Feldman, Maryann, et al., (2007). Lessons from the Commercialization of the Cohen-Boyer Patents: The Stanford University Licensing Program, Handbook of best practices.
     2.O`Hamilton, Joan (1988). A biotech hit and a bold way to profit from it. Business Week.
     3.Osterwalder Alexander & Pigneur Yves, Business Model Generation: A Handbook For Visionaries, Game Changers, And Challengers, Hoboken, NJ: John Wiley and Sons (2010).
     4.Rabinow, Paul (1996). Making PCR: A Story of Biotechnology. Chicago , University of Chicago Press.
     (三)期刊論文
     1.Baringaga Marcia, Biotech nightmare: does Cetus own PCR? 251 Science 739 (1991).
     2.Barrangou, Rodolphe et al., Crispr Provides Acquired Resistance against Viruses in Prokaryotes, 315 Science 1709 (2007).
     3.Beck, Shane, Do you have a license?: products licensed for PCR in research applications, 12 The Scientist 21 (1998).
     4.Bonas, Ulla et al., Genetic and Structural Characterization of the Avirulence Gene Avrbs3 from Xanthomonas Campestris Pv. Vesicatoria, 218 Mol. Gen. Genet. 127 (1989).
     5.Brouns, Stan J.J. et al., Small Crispr Rnas Guide Antiviral Defense in Prokaryotes, 321 Science 960 (2008).
     6.Carroll, Dana, Genome Engineering with Zinc-Finger Nucleases, 188 Genetics 773 (2011).
     7.Carroll, Dana, A Crispr Approach to Gene Targeting, 20 Mol. Ther. 1658 (2012).
     8.Carroll, Kyler J. et al., A Mouse Model for Adult Cardiac-Specific Gene Deletion with Crispr/Cas9, 113 Proc. Natl. Acad. Sci. U S A 338 (2016).
     9.Cloney, Ross, Patent Law and Genome Engineering: A Short Guide to a Rapidly Changing Landscape, 24 Mol. Ther. 419 (2016).
     10.Cohen, Stanley N. et al., Construction of Biologically Functional Bacterial Plasmids in Vitro, 70 Proc. Natl. Acad. Sci. U S A 3240 (1973).
     11.Deltcheva, Elitza et al., Crispr Rna Maturation by Trans-Encoded Small Rna and Host Factor Rnase III, 471 Nature 602 (2011).
     12.Esvelt Kevin M. et al., Concerning RNA-guided gene drives for the alteration of wild populations, Elife (2014).
     13.Feldman, Maryann et al., Lessons from the Commercialization of the Cohen-Boyer Patents: The Stanford University Licensing Program, Handbook of best practices 1797, 1797-1807 (2007).
     14.Fisken, Jane & Rutherford, Jan, Business models and investment trends in the biotechnology industry in Europe, 8 J. of Comm. Biotechnology 191, 192 (2002).
     15.Fore, Joe et al., The effects of business practices, licensing, and intellectual property on development and dissemination of the polymerase chain reaction: case study, 1 J. Biomed. Discov. Collab. 1 (2006).
     16.Gantz, Valentino M. et al., Highly Efficient Cas9-Mediated Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles Stephensi, 112 Proc. Natl. Acad. Sci. U S A 6736 (2015).
     17.Gordon, Jon W. et al., Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA, 77 Proc. Natl. Acad. Sci. U S A 7380 (1980).
     18.Ishino, Yoshizumi et al., Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia Coli, and Identification of the Gene Product, 169 J. Bacteriol. 5429 (1987).
     19.Jansen, Ruud et al., Identification of Genes That Are Associated with DNA Repeats in Prokaryotes, 43 Mol. Microbiol. 1565 (2002).
     20.Jinek, Martin et al, A Programmable Dual-Rna-Guided DNA Endonuclease in Adaptive Bacterial Immunity, 337 Science 816 (2012).
     21.Kaminski, Rafal et al., Excision of Hiv-1 DNA by Gene Editing: A Proof-of-Concept in Vivo Study, 23 Gene Ther. 690 (2016).
     22.Ku, Deborah (2017). The Patentability of the Crispr-Cas9 Genome Editing Tool, 16 Chi. -Kent J. Intell. Prop. 408.
     23.Garber, Ken, Homestead 2000: The Genome, SIGNALS (2000).
     24.Minssen, Timo et al., Clearing a way through the CRISPR patent jungle, Life Sciences Intellectual Property Review, (2018).
     25.Mojica, Francisco et al., Transcription at Different Salinities of Haloferax Mediterranei Sequences Adjacent to Partially Modified Psti Sites, 9 Mol. Microbiol. 613 (1993).
     26.Mojica, Francisco et al., Biological Significance of a Family of Regularly Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria, 36 Mol. Microbiol. 244 (2000).
     27.Paquet, Dominik et al., Efficient Introduction of Specific Homozygous and Heterozygous Mutations Using Crispr/Cas9, 533 Nature 125 (2016).
     28.Pardee, Keith et al., Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components, 165 Cell 1255 (2016).
     29.Rodriguez Eduardo, Ethical Issues in Genome Editing using Crispr/Cas9 System, 7 J. Clin. Res. Bioeth. 266 (2016).
     30.Soyk, Sebastian et al., Variation in the Flowering Gene Self Pruning 5g Promotes Day-Neutrality and Early Yield in Tomato, 49 Nat. Genet. 162 (2017).
     31.Sun M, A one-stop shop for gene-splicing patents. Stanford and University of California officials propose a novel way to license patents to biotechnology companies, 219 Science1302, 1302-3 (1983).
     32.Tabebordbar, Mohammadsharif et al., In Vivo Gene Editing in Dystrophic Mouse Muscle and Muscle Stem Cells, 351 Science 407 (2016).
     33.Waltz, Emily, Gene-Edited Crispr Mushroom Escapes Us Regulation, 532 Nature 293 (2016).
     34.Watson, James D. & Francis H. Crick, Molecular Structure of Nucleic Acids; a Structure for Deoxyribose Nucleic Acid, 171 Nature 737 (1953).
     三、網際網路
     1.BROAD Institute, Information about licensing CRISPR genome editing systems, available at https://www.broadinstitute.org/partnerships/office-strategic-alliances-and-partnering/information-about-licensing-crispr-genome-edi (last visited:Jul/10/2018).
     2.ERS Genomics, CRISPR Therapeutics, Intellia Therapeutics, Caribou Biosciences and ERS Genomics announce appellate brief seeking reversal of U.S. Patent Board Decision on CRISPR/Cas9 gene editing, available at http://www.ersgenomics.com/2017-11-22%20UCB%20Brief%20(Public).pdf (last visited: Jan/15/2018).
     3.Forbes, How Much Is a CRISPR Patent License Worth? available at https://www.forbes.com/sites/jacobsherkow/2017/02/21/how-much-is-a-crispr-patent-license-worth/#3e573ae66b77 (last visited: Feb/23/2018).
     4.Global Market Insights Inc., Gene Editing Market size was valued at over USD 2.17 billion in 2015 and will grow at over 14% CAGR from 2016 to 2024, available at https://www.gminsights.com/industry-analysis/gene-editing-market (last visited: Feb/23/2018).
     5.Harvard University, CRISPR: A game-changing genetic engineering technique, available at http://sitn.hms.harvard.edu/flash/2014/crispr-a-game-changing-genetic-engineering-technique/ (last visited:Nov/10/2017).
     6.Inkwood research, ASIA PACIFIC CRISPR MARKET FORECAST 2018-2026, available at https://www.inkwoodresearch.com/reports/asia-pacific-crispr-market/#report-summary (last visited: Feb/23/2018).
     7.Jens Boch, Generation of resistant rice by targeted genome engineering using TALENs, available at http://www.molekulare-biowissenschaften.uni-halle.de/molekulare-biowissenschaften/projekte-forschungsschwerpunkt/2656980_2657144/jens-boch/ (last visited:Nov/28/2017).
     8.Labiotech, History of Biotech: How the “First” Biotech Patent Generated Millions, available at https://labiotech.eu/making-dollars-out-of-the-recombinant-dna-biotech-patents/ (last visited: Feb/01/2018).
     9.National Institutes of Health, What is a gene, available at https://ghr.nlm.nih.gov/primer/basics/gene (last visited: Dec/14/2017).
     10.National Institutes of Health, What is a genome, available at https://ghr.nlm.nih.gov/primer/hgp/genome (last visited: Dec/14/2017).
     11.National Institutes of Health, A biotherapeutic CRISPR-delivery platform to eradicate Clostridium difficile, available at http://grantome.com/grant/NIH/R21-AI121662-01 (last visited:Nov/28/2017).
     12.Pugatch Consilium, BCI 2017 Report and Results, available at http://www.pugatch-consilium.com/?page_id=1589#BCI_2017 (last visited:Jul/10/2018).
     13.Sangamo Therapeutic, Kite, a Gilead Company, And Sangamo Therapeutics Announce Collaboration To Develop Next-Generation Engineered Cell Therapies For The Treatment Of Cancer, available at https://investor.sangamo.com/press-releases/detail/397/kite-a-gilead-company-and-sangamo-therapeutics-announce (last visited: Apr/16/2018).
     14.USPTO, Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription, available at http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20140068797.PGNR. (last visited: Nov/11/2017).
     15.USPTO, CRISPR-Cas systems and methods for altering expression of gene products, available at http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/8945839 (last visited: Nov/11/2017).
     16.University of Pennsylvania, FDA Approves CAR T Therapy for Large B-Cell Lymphoma Developed at University of Pennsylvania, available at https://www.pennmedicine.org/news/news-releases/2018/may/fda-approves-car-t-therapy-for-large-b-cell-lymphoma-developed-at-university-of-pennsylvania (last visited : May/20/2018).
     17.科技部,GRB政府研究資訊系統,參見於https://www.grb.gov.tw/index (最後瀏覽日:2018年4月28日)。
     18.國家圖書館,臺灣博碩士論文知識加值系統,參見於https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=wC67d0/webmge?webmgemode=graduate&mode=advance (最後瀏覽日:2018年4月28日)。
     19.經濟部生技醫藥產業發展推動小組,2017生物技術產業簡介,參見於https://www.biopharm.org.tw/download/2017生物技術產業簡介.pdf (最後瀏覽日:2018年5月11日)。
     20.經濟部智慧財產局,中華民國專利資訊檢索系統,參見於 https://twpat.tipo.gov.tw/ (最後瀏覽日:2018年4月28日)。
     21.資誠聯合會計師事務所,生技產業之IP相關議題,參見於https://www.pwc.tw/zh/services/legal/knowledge-center/ip-bulletin/ip-newsletter/assets/ip-feature-201306.pdf (最後瀏覽日:2018年3月15日)。
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.LLME.014.2018.F10-