dc.contributor | 應數系 | |
dc.creator (作者) | Wu, Shun-Tang | |
dc.creator (作者) | 蔡隆義 | |
dc.creator (作者) | Tsai, Long-Yi | |
dc.date (日期) | 2009-04 | |
dc.date.accessioned | 25-九月-2018 16:23:07 (UTC+8) | - |
dc.date.available | 25-九月-2018 16:23:07 (UTC+8) | - |
dc.date.issued (上傳時間) | 25-九月-2018 16:23:07 (UTC+8) | - |
dc.identifier.uri (URI) | http://nccur.lib.nccu.edu.tw/handle/140.119/120131 | - |
dc.description.abstract (摘要) | We consider an initial-boundary value problem for a Petrovskiĭ equation, with nonlinear damping, of the form $$u_{tt}+\\Delta^2u+a|u_t|^{m-2}u_t=b|u|^{p-2}u$$ in a bounded domain. We show that solutions are global in time under some conditions without any relations between $m$ and $p$. We also prove that local solutions blow up in finite time if $p>m$ and the initial energies are nonnegative. Decay estimates for the energy functionals and estimates for the life-span of solutions are given. In this way, we can extend the result in [S. A. Messaoudi, J. Math. Anal. Appl. 265 (2002), no. 2, 296–308; MR1876141]. | en_US |
dc.format.extent | 112 bytes | - |
dc.format.mimetype | text/html | - |
dc.relation (關聯) | Taiwanese Journal of Mathematics, Vol. 13, No. 2A, pp. 545-558 | |
dc.relation (關聯) | AMS MathSciNet:MR2500006 | |
dc.title (題名) | On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system | |
dc.type (資料類型) | article | |
dc.identifier.doi (DOI) | 10.11650/twjm/1500405355 | |
dc.doi.uri (DOI) | http://dx.doi.org/10.11650/twjm/1500405355 | |