學術產出-期刊論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Distribution of a random functional of a Ferguson-Dirichlet process over the unit sphere.
作者 姜志銘
Jiang, Thomas J.
郭錕霖
Kuo, Kun-Lin
貢獻者 應數系
日期 2008
上傳時間 27-九月-2018 17:17:38 (UTC+8)
摘要 Jiang, Dickey, and Kuo [12] gave the multivariate c-characteristic function and showed that it has properties similar to those of the multivariate Fourier transformation. We first give the multivariate c-characteristic function of a random functional of a Ferguson-Dirichlet process over the unit sphere. We then find out its probability density function using properties of the multivariate c-characteristic function. This new result would generalize that given by [11].
關聯 ELECTRONIC COMMUNICATIONS in PROBABILITY,Volume 13, paper no. 49, 518-525.
資料類型 article
DOI http://dx.doi.org/10.1214/ECP.v13-1416
dc.contributor 應數系
dc.creator (作者) 姜志銘
dc.creator (作者) Jiang, Thomas J.
dc.creator (作者) 郭錕霖
dc.creator (作者) Kuo, Kun-Lin
dc.date (日期) 2008
dc.date.accessioned 27-九月-2018 17:17:38 (UTC+8)-
dc.date.available 27-九月-2018 17:17:38 (UTC+8)-
dc.date.issued (上傳時間) 27-九月-2018 17:17:38 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120183-
dc.description.abstract (摘要) Jiang, Dickey, and Kuo [12] gave the multivariate c-characteristic function and showed that it has properties similar to those of the multivariate Fourier transformation. We first give the multivariate c-characteristic function of a random functional of a Ferguson-Dirichlet process over the unit sphere. We then find out its probability density function using properties of the multivariate c-characteristic function. This new result would generalize that given by [11].en_US
dc.format.extent 105776 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) ELECTRONIC COMMUNICATIONS in PROBABILITY,Volume 13, paper no. 49, 518-525.
dc.title (題名) Distribution of a random functional of a Ferguson-Dirichlet process over the unit sphere.
dc.type (資料類型) article
dc.identifier.doi (DOI) 10.1214/ECP.v13-1416
dc.doi.uri (DOI) http://dx.doi.org/10.1214/ECP.v13-1416