學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 數位教材適性設計在國中多項式乘法教學的應用
The Application of Adaptive Designs of Digital Material for Teaching Polynomial Multiplication in Junior High School
作者 張琇如
貢獻者 詹志禹
Chan, Chih-Yu
張琇如
關鍵詞 認知引導策略
適性設計
內在動機
學習風格
Cognitive guiding strategy
Adaptive design
Intrinsic motivation
Earning style
日期 2018
上傳時間 1-十月-2018 12:18:02 (UTC+8)
摘要 本研究旨在探討多項式乘法在數位教材的適性設計,透過三種教材類型(箭頭型、長方形面積型與基因棋盤格型)為前導組織體,探討教材類型、認知引導方式與學習者的學習風格對學習者的認知引導適合度、內在動機與學習效果的影響,也就是探討教材設計對數位教材適性程度的可能影響,希望對數位教材的適性化程度有更深入的了解。
依據結果的分析,本研究主要的研究發現如下:
(1)在學習風格上,學生在類型的分佈上感知視覺型的學習者偏多。此外,直覺文字型與直覺視覺型的學習者較適合箭頭型的引導策略。(2)在內在動機上,三種教材類型的認知引導策略下的內在動機都顯著優於前測的內在動機,認知引導適合度對內在動機具有顯著而正向影響。(3)在認知引導適合度上,適合度越高則有學習效果越好的傾向;在認知負荷上,低認知負荷的學習效果都顯著優於高認知負荷的學習效果。(4)學習效果會受教材類型、認知引導適合度與學習風格的影響。
The aim of this research is to investigate some adaptive designs of learning material for teaching polynomial multiplication. A purposive sampling of 357 junior high school students participated in the current study. Three types (arrowhead, rectangular area, and genetic checkerboard) of digital learning materials were designed as advance organizers and their relationships with learning styles and effects on appropriateness of cognitive guiding strategies, intrinsic motivation, and learning performance were investigated. It was found that, among four learning styles, the highest percentage of students appeared in the category of “Sensing and Visual.” In addition, students with learning styles of “Intuitive-Verbal” and “Intuitive-Visual” are more adaptive to arrowhead types of learning material than those with other learning styles. It was also found that the level of intrinsic motivation in learning three types of digital materials were higher than those on pretest. Furthermore, the adaptiveness of three types of cognitive guiding strategies is beneficial to intrinsic motivation. Students with low cognitive load performed better than those with high cognitive load. Finally, it was concluded that learning performances were affected by designing types of learning materials, adaptiveness of cognitive guidance and learning styles.
參考文獻 參考文獻
一、中文部分
王昌傑(2004)。學習風格對國中生自然科學習成就之影響(未出版之碩士論文)。慈濟大學,花蓮縣。
王弈云(2015)。高雄市高一學生在多項式方程式單元之錯誤類型分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
江采姿(2017)。在數位教材融入國文科教學的情境 下學生學習風格與成效差異之研究 ---以台南市某國中為例(未出版之碩士論文)。吳鳳科技大學,嘉義縣。
吳宇穎(2005)。多媒體組合方式與知覺偏好對學習結果的影響(未出版之碩士論文)。國立中正大學,嘉義縣。
吳志敏(2002)。電腦動畫應用於國中代數概念教學之實驗研究(未出版之碩士論文)。國立臺北科技大學,臺北市。
吳清山,2012“國家教育研究院電子報第 38 期) http://epaper.naer.edu.tw/index.php?edm_no=38&content_no=1011
宋曜廷(2000)。先前知識文章結構和多媒體呈現對文章學習的影響。 臺北:國立臺灣師範大學教育心理與輔導研究所博士論文 (未 出 版)。
林憶辰(2007)。探討多項式乘法中物件、變號、項數對國中學生解題的影響(未出版之碩士論文)。國立臺北教育大學,臺北市。
林寶山 (1990)。教學論:理論與方法。臺北市:五南書局。
凃金堂(民100)。運用「範例(worked-out example)」在國小數學問題解決的教學實驗研究。教育心理學報,43卷1期。
翁榮源、陳定威與呂榮順(民98)。Herrmann 學習風格理論對大學生有機化學學習成就之研究。科學教育月刊,318 ,31-47。
張信忠(2008)。國中數學領域「多項式四則運算」單元之線上適性學習模式研發(未出版之碩士論文)。亞洲大學,臺中市。
張春興(1994)。現代心理學。臺北:東華。臺北:東華。
張琇如(2016)。合作式數學學習的內、外在動機路徑分析。臺灣數學教師,37(1),13-30。doi: 10.6610/TJMT.20160126.0
張嵐雄(2011)。國中生在多項式乘除運算的主要錯誤類型及其補救教學之研究(未出版之碩士論文)。國立臺灣師範大學,台北市。
莊秀卿(2013)。多媒體組合與認知風格對國小自然科學學習成效之影響-以水循環單元為例(未出版之碩士論文)。國立臺灣海洋大學,基隆市。
莊煥銘、陳虹真、沈家成(2007)。學習路徑、學習風格與數位學習績效之研究-以國中數學科為例。第十八屆國際資訊管理學術研討會論文集。
陳育民(2003)。學習風格與學習模式對中學生電子化學習成效之影響(未出版之碩士論文)。國立中正大學
陳怡如(2007)。國二學生在多項式的乘除運算單元錯誤類型之分析研究(未出版之碩士論文)。 國立高雄師範大學,高雄市。
陳密桃(2003)。認知負荷理論及其對教學的啟示。國立高雄師範大學 教育系教育學刊,21,29-51。
陳嘉皇(2017)。學童「圖卡覆蓋」代數推理歷程之研究:以三個個案為例,國立嘉義大學國民教育學報,19, 79-107.
陳靜儀(2013)。多媒體組合與認知風格對國小數學科學習成效之研究-以分數乘法為例(未出版之碩士論文)。國立臺灣海洋大學,基隆市。
湯家偉(譯)(民 105)。結構方程模式--偏最小平方法PLS-SEM(原作者:Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle.)。臺北市:高等教育文化事業有限公司。(原著出版年: 2014)
程鈺涵(2018)。翻轉教室對不同學習風格之國中生其學習成效之影響(未出版之碩士論文)。中原大學,桃園市。
楊淯丞(2014)。以GeoGebra軟體融入教學對高一學生在多項式函數及其圖形進行補救教學之研究(未出版之碩士論文)。國立臺南大學應用數學系碩士班,台南。
楊惠雯(2010)。虛擬教具應用於國中學生學習多項式展開與因式分解之影響(未出版之碩士論文)。國立交通大學,新竹市。
劉耀明(2007)。學習風格在數位學習環境中對學習成效及學習態度影響之研究(未出版之碩士論文)。國立中正大學,嘉義市。
鄭宏偉(2015)。二階段評量對多項式概念教學成效之研究(碩士論文)。國立高雄師範大學,高雄市。
賴文儀(2013)。圖形表徵融入多項式電子白板教學之成效(未出版之碩士論文)。國立中正大學,嘉義縣。
薛圳宏(2002)。發展數學科教學模組之個案研究-以多項式乘法和因式分解單元為例(未出版之碩士論文)。國立高雄師範大學,高雄市。
鍾志忠(2010)。「同儕個別學習輔導」融入「多項式運算」補救教學之研究(未出版之碩士論文)。國立嘉義大學,嘉義市。
簡綜男(1999)。互動式多媒體輔助教材在電腦教學之學習成效影響研究(未出版之碩士論文)。國立中央大學,中壢市。
羅詩凱(2015)。國中資優數學多項式因式分解之解題策略(未出版之碩士論文)。中原大學,桃園市。
關佩云(2017)。比較臺灣和馬來西亞大學生個人屬性、知覺學習和情緒智力對學習風格影響之研究(未出版之碩士論文)。逢甲大學,台中。

二、外文部分
Ainsworth, S. (1999). The functions of multiple representations. Computer & Education, 33(2/3), 131-152. doi.org/10.1016/S0360-1315(99)00029-9.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. dx.doi.org/10.1016/j.learninstruc.2006.03.001.
Amabile, T. M. (1985). Motivation and creativity: Effects of motivational orientation on creative writers. Journal of Personality and Social Psychology, 48, 393–399. dx.doi.org/10.1037/0022-3514.48.2.393.
Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3, 185–201. doi.org/10.1016/1053-4822(93)90012-S.
Amabile, T. M., & Mueller, J. S. 2007. Studying creativity, its processes, and its antecedents: An exploration of the componential theory of creativity. In J. Zhou & C. Shalley (Eds.), Handbook of organizational creativity: 31–62. Mahwah, NJ: Erlbaum.
Amabile, T. M., DeJong, W., & Lepper, M. (1976). Effects of externally imposed deadlines on subsequent intrinsic motivation. Journal of Personality and Social Psychology, 34, 92–98.
Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The Work Preference Inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66. 950–967.
Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological bulletin, 103(3), 411-423. DOI: 10.1037/0033-2909.103.3.411
Arslan, C., Gocmencelebi, S. I., & Tapan, M. S. (2009). Learning and reasoning styles of pre service teachers’: inductive or deductive reasoning on science and mathematics related to their learning style. Procedia Social and Behavioral Sciences, 1, 2460-2465. doi.org/10.1016/j.sbspro.2009.01.432.
Atkinson, R. C., & Shiffrin, R. M. (1971). The control processes of short-term memory. Institute for Mathematical Studies in the Social Sciences, Stanford University.
Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51(5), 267-272. dx.doi.org/10.1037/h0046669.
Ausubel, D. P. (1968). Educational psychology. A cognitive view. New York: Holt, Rinehart and Winston, Inc.
Ausubel, D. P., J. D. Novak, & H. Hanesian, (1978). Educational psychology: A cognitive view. 2nd edition. New York: Holt, Rinehart, and Winston.
Ayersman, D. (1993). An overview of the research on learning styles and hypermedia environments. Paper presented at the 1993 Annual Convention of the Eastern Educational Research Association, Clearwater Beach, Florida.
Ayersman, D. J., and Minden, A. V. (1995). Individual differences, computers and instruction. Computers in Human Behavior, 11 (3), 371–390.
Baddeley AD (1986). Working memory. Oxford, UK: Clarendon Press; Baddeley A. Working memory: Thought and action. Oxford: Oxford University Press.
Baddeley AD, Hitch GJ (1974). Working memory. In: Recent advances in learning and motivation, Vol.8 (Bower GA, ed), 47–90. New York: Academic Press;
Baddeley, A. (1997). Human memory: Theory and practice. East Sussex, UK: Psychology Press.
Bahar, M. (2009). The Relationships between Pupils` Learning Styles and Their Performance in Mini Science Projects. Educational Sciences: Theory and Practice, 9(1), 31-49. https://eric.ed.gov/?id=EJ837775 .
Bandler, R., & Grinder, J. (1975). The structure of magic I. Palo Alto, CA: Science and Behavior Books.
Bandler, R., and J. Grinder. 1979. Frogs into princes. Moab, Utah: Real People Press.
Behr. M., Lesh, R.. Post, T., & Silver, E. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.). The acquisition of mathematical concepts and processes. New York: Academic Press.
Berthold, K., Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101(1), 70–87. Google Scholar, Crossref. dx.doi.org/10.1037/a0013247 .
Bettye C. H. (1999). Using algebra tiles effectively. Prentice-Hall, Inc. New Jersey
Billings, D., & Cobb, K. (1992). Effects of learning style preferences, attitude and GPA on learner achievement using computer assisted interactive videodisc instruction. Journal of Computer-Based Instruction, 19 (1), 12-16.
Birenbaum, M., & Rosenau, S. (2006). Assessment preferences, learning orientation, and learning strategies of pre-service and in-service teachers. Journal of Education for Teaching, 32 (2), 213-225. doi.org/10.1080/02607470600655300.
Blanton M.L., Kaput J.J. (2011) Functional thinking as a route into algebra in the elementary grades. In: Cai J., Knuth E. (eds) Early algebraization. advances in mathematics education. Springer, Berlin, Heidelberg
Bruner, J. S.(1966). Toward a theory of instruction. Cambridge, MA: Harvard University.
Brusilovsky, P. (1999). Adaptive and intelligent technologies for web-based education. KI – Kunstliche Intelligenz, 13, 19–25.
Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted Interaction. 11 (1/2), 87-110. doi.org/10.1023/A:1011143116306
Brusilovsky, P., & Maybury, M. T. (2002). From adaptive hypermedia to the adaptive web. Communications of the ACM, 45(5), 30–33.
Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: A tool for development adaptive courseware. Computer Networks and ISDN Systems, 30, 291–300. doi.org/10.1016/S0169-7552(98)00082-8.
Brusilovsky, P., Maybury, M. T. (2002). From adaptive hypermedia to adaptive Web. In P., Brusilovsky,M. T. Maybury, (eds.), Communications of the ACM 45 (5), Special Issue on the Adaptive Web, 31-33.
Burris, S, Kitchel, T., Molina, Q., Vincent, S. & Warner, W. (2008). The language of learning styles. Techniques: Connecting Education & Careers, 83(2), 44-49.
Can, Ş. (2010). Determination of the learning styles of the pre-school teacher candidates (The case of Mugla University, Turkey). Procedia social and behavioral sciences, 2, 4137-4141. doi.org/10.1016/j.sbspro.2010.03.653
Carlson, H. (1991). Learning style and program design in interactive multimedia. Educational Technology Research and Development, 39 (3), 41-48. doi.org/10.1007/BF02296437
Carver, C. A., Howard, R. A., & Lane, W. D. (1999). Addressing different learning styles through course hypermedia. IEEE Transactions on Education, 42(1), 33–38. DOI: 10.1109/13.746332
Chang, H. J. (2006). Adaptation in Depth: The Use of ‘Cognitive Object-Oriented Teaching Model’. ED-MEDIA 2006--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Orlando, FL, USA.
Chang, H. J. (2012). Cognizable, Learnable, Expressible, Accessible, and Reasonable Model in Mathematical Thinking, Reasoning and Problem Solving. The Asian Technology Conference in Mathematics, 2012, Advanced Technology Council in Mathematics, Bangkok, Thailand, December 16-20.
Chang, H. J. (2013). Evolutions of Thinking, Reasoning, and constructing in Learning Polynomial operations. The Asian Technology Conference in Mathematics_ ATCM-Korea chapter, 2013, Advanced Technology Council in Mathematics, CheongJu, South Korea, August 7-10.
Chang, H. J. (2014). The cognitive object-oriented representation in learning and evaluating processes. 7th International Cognitive Load Theory Conference (ICLTC), Taipei, Taiwan, June 24-26.
Chang, H. J. (2015). Beyond the Representation: Cognition in Manipulative Learning Objects within Learning Simple Equations. International Journal of Innovations in Engineering and Technology, 5(11), 855-859. doi.org/10.7763/IJIET.2015.V5.626.
Chang, H. J. (2016). The Temporal Path Analysis Model of Intrinsic and Extrinsic motivation in cooperative learning environment. International Journal of Learning and Teaching, 2(2), 133-139. doi: 10.18178/ijlt.2.2. doi.org/10.7763/IJIET.2015.V5.626 .
Chang, H.J, Tseng, S. S.(2003). Design of an object-oriented teaching model for Three-Dimensional Geometry, The 8TH Asia Technology Conference in Mathematic, 2003, Advanced Technology Council in Mathematics, Hsinchu, Taiwan. 404~413.
Chang, H.J. (2005). Enhancing web-based instruction/learning: the use of ‘Cognitive, Object-Oriented Teaching Model’. The 10th Asian Technology Conference in Mathematics, 2005, Advanced Technology Council in Mathematics, Cheong-Ju, South Korea, 213-222
Chang, H.J. (2007a). Adaptation-in-Depth Educational System within the Rule Base Reasoning. ED-MEDIA 2007--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Vancouver, BC, Canada
Chang, H.J. (2007b). The Cognitive, Interactive, Transparent Teaching Interface: An Application to Teach Coordinate Plane. 科學/數學之閱讀、寫作與論證國際研討會, 彰化 (國立彰化師範大學,國立台東大學 主辦)
Chang, H.J. (2007c). Beyond the Web-Based Cognitive and Interactive Metacognition Interface within Teaching Similar Triangles. The 12th Asian Technology Conference in Mathematics, 2007, Advanced Technology Council in Mathematics, Taipei, Taiwan, December16-20, 2007.
Chang, H.J. (2007d). Cognitive Requirement and management of Cognitive Object-Oriented Teaching Model. The 12th Asian Technology Conference in Mathematics, 2007, Advanced Technology Council in Mathematics, Taipei, Taiwan, December16-20, 2007.
Chang, H.J. (2008). Supporting Fault-Tolerance Learning within Cognitive, Object-Oriented Teaching Model, 2008--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Vienna, Austria, June 30-July 4, 2008.
Chang, Y. C., Kao, W.Y., Chu, C. P., Chiu, C. H. (2009) learning style classification mechanism for e-learning, Computers & Education, 53(2), 273-285, doi.10.1016/j.compedu.2009.02.008
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5, 121-152. doi.org/10.1207/s15516709cog0502_2.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149-210. doi.org/10.1007/BF01320076
Clark, R. E. (2001). A summary of disagreements with the ‘mere vehicles’ argument. In R. E. Clark (Ed.), Learning from media: Arguments, analysis, and evidence (pp. 125–136). Greenwich, CT: Information Age Publishing
Clark, R.C., Nguyen, F., and Sweller, J. (2006). Efficiency in learning: evidence-based guidelines to manage cognitive load. San Francisco: Pfeiffer
Colom, R., Abad, F. J., Quiroga, M., Shih, P. C., & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584–606. doi.org/10.1016/j.intell.2008.01.002
Csikszentmihalyi, M. (1996). Creativity, flow and the psychology of discovery and invention. New York: Harper Collins.
Csikszentmihalyi, Mihaly (1975). Beyond Boredom and Anxiety: Experiencing Flow in Work and Play, San Francisco: Jossey-Bass.
Csikszentmihalyi, Mihaly (1978) Intrinsic Rewards and Emergent Motivation in The Hidden Costs of Reward: New Perspectives on the Psychology of Human Motivation eds Lepper, Mark R; Greene, David, Erlbaum: Hillsdale: NY 205-216
Davidson, G., & Savenye, W. (1992, Spring). How do learning styles relate to performance in a computer applications course? Journal of Research on Computing in Education, 24 (3), 348-357. doi.org/10.1080/08886504.1992.10782016
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115. DOI: 10.1037/h0030644
Deci, E. L. (1972) Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22, 113-120. dx.doi.org/10.1037/h0032355
Deci, E. L. (1975). Intrinsic motivation. New York: Plenum.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627– 668.
Dunn, R., & Bruno, A. (1985, September). What does the research on learning styles have to do with Mario? The Clearing House, 59 (1), 9-12. doi.org/10.1080/00098655.1985.9955590
Dunn, R., & Dunn, K. (1994). Teaching young children through their individual learning styles-practical approaches for grades K-2. Massachusetts: Simon & Schuster.
Dunn, R., and Dunn, K. (1974). Learning Style as a Criterion for Placement in Alternative Programs. Phi Delta Kappan, 56 (4), 275-278.
Eilam, B. & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and Instruction, 16, 368-378. doi.org/10.1016/j.learninstruc.2007.07.003.
Eisenberger, R., & Cameron, J. (1996). Detrimental effects of reward: Reality or myth? Journal of the American Psychological Association, 51, 1153-1166. doi.org/10.1177/108705479700200115
Ellis, D., Ford, N., & Wood, F. (1993, February). Hypertext and learning styles. The Electronic Library, 11 (1), 13-18. doi.org/10.1108/eb045203
Essalmi, F., Ayed, L. J. B., Jemni, M., Kinshuk, & Graf, S. (2010). A fully personalization strategy of E-learning scenarios. Computers in Human Behavior, 26(4), 581-591. doi.org/10.1016/j.chb.2009.12.010
Felder, R. M. & Soloman, B. A. (1993). Learning styles and strategies. Retrieved April 7, 2018, From North Carolina State University, http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.htm
Felder, R. M. (n.d.) Are learning style invalid? Retrieved April 7, 2018, From North Carolina State University, http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/LS_Validity(On-Course).pdf
Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674–681. Preceded by a preface in 2002: http://www.ncsu.edu/felderpublic/ Papers/LS-1988.pdf
Felder, R. M., & Silverman, L. K. (2016, Dec) Index of Learning Styles Questionnaire. Retrieved from North Carolina State University. https://www.webtools.ncsu.edu/learningstyles/
Fenrich, P. (2005). Creating Instructional Multimedia Solutions: Practical Guidelines for the Real World. Santa Rosa, CA: Informing Science Press.
Fenrich, P. (2006). Getting practical with learning styles in “Live” and computer-based training settings. Issues in informing science and information technology. 3. 233-242. doi.org/10.28945/886.
Fleming, N.D. (1995). I`m different; not dumb. Modes of presentation (VARK) in the tertiary classroom, in Zelmer,A., (ed.) Research and Development in Higher Education, Proceedings of the 1995 Annual Conference of the Higher Education and Research Development Society of Australasia (HERDSA),HERDSA, Volume 18, 308 – 313.
Gagne, E. D. (1985). The cognitive psychology of school learning. Boston, MA: Little, Brown and Company.
Gagne´, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26, 331–362. doi.org/10.1002/job.322
Garger, S. & Guild, P. (1984). Learning Styles: The Crucial Differences. Curriculum Review, 9-12.
Geisert, G., & Dunn, R. (1991). Effective use of computers: Assignments based on individual learning styles. The Clearing House, 64 (4), 219-224.
Given, B. K. (2000). Learning Styles: A guide for teachers and parents. South Coast Highway Oceanside: Learning Forum Publication. doi.org/10.1002/dys.193
Giorgi, P., (2011).On polynomial multiplication in chebyshev basis, IEEE Transactions on Computers, 61, 780-789. doi:10.1109/TC. 2011.110
Goldin, G. & Janvier, C. (1998). Representation and the psychology of mathematics education. The Journal of Mathematics Behaviour, 17 (1), 1-4. doi.org/10.1016/S0732-3123(99)80057-1
Goldin, G. & Shteingold, (2001). System of representations and the development of mathematical concepts. In A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics (pp. 1-23). Yearbook 2001. Reston, VA: NCTM.
Graf, S., Viola, S.R., Leo, T., Kinshuk, (2007). In-Depth Analysis of the Felder-Silverman Learning Style Dimensions, Journal of Research on Technology in Education, 40(1), 79-93.
Gregorc, A. F. (1979). Learning/teaching styles: Their nature and effects. In National Association of Secondary School Principals (Eds.), Student learning styles: Diagnosing and prescribing programs (pp. 19-26). Reston, VA: NASSP.
Gregorc, A. F. (1985). Inside styles: Beyond the basics. Columbia, CT: Gregorc Associates.
Guild, P., & Garger, S. (1985). Marching to different drummers. Alexandria, VA: Association for Supervision and Curriculum Development.
Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd edition. Thousand Oaks, CA: Sage.
Hair, J. F., Ringle, C.M. Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet, Journal of Marketing Theory and Practice (JMTP), 19, Issue 2, pp. 139-152. DOI: 10.2753/MTP1069-6679190202
Hair, J. F., Sarstedt, M. Torsten M. Pieper, and Christian M. Ringle. (2012a). The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Planning 45 (5-6). 320-340. doi.org/10.1016/j.lrp.2012.09.008
Hair, J. F., Sarstedt, M., Christian M., Ringle, C. M., and Jeannette A. Mena. (2012b). An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science 40 (3). 414-433. doi.org/10.1007/s11747-011-0261-6
Hardman, K.O. & Cowan, N. (2016). Reasoning and memory: People make varied use of the information available in working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 42(5), 700-22. doi: 10.1037/xlm0000197
Harr, N. Eichler, A. and Renkl, A. (2014) Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics. Front. Psychol. (5), 924. doi.org/10.3389/fpsyg.2014.00924.
Harr, N., Eichler, A., and Renkl, A. (2014). Integrating pedagogical content doi: 10.3389/fpsyg.2014.00924
Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. Zentralblatt Didaktik für Mathematik (ZDM), 41(5), 535-540. doi: 10.1007/s11858-009-0214-4.
Honey, P. and Mumford, A. (1986a). The Manual of Learning Styles, Peter Honey Associates. Honey, P. and Mumford, A. (1986b). Learning Styles Questionnaire, Peter Honey Publications Ltd.
Honey, P., & Mumford, A. (1982). The manual of learning styles. Maidenhead
Jitendra, A.K., Hoff, K., & Beck. M.M. (1999). Teaching middle school students with learning disabilities to solve word problems using a schema-based approach. Remedial and Special Education, 20(1), 50-64. doi.org/10.1177/074193259902000108
Jitendra, A.K., Star, J.R., Rodriguez, M., Lindell, M., & Someki, F. (2011). Improving students’ proportional thinking using schema-based instruction. Learning and Instruction, 21(6), 731-745. doi: 10.1016/j.learninstruc.2011.04.002
Jitendra, A.K., Star, J.R., Starosta, K., Leh, J.M., Sood, S., Caskie, G., Hughes, C.L., & Mack, T.R. (2009). Improving seventh grade students’ learning of ratio and proportion: The role of schema-based instruction. Contemporary Educational Psychology, 34(3), 250-264. doi: 10.1016/j.cedpsych.2009.06.001
Johnson, D. W. and Johnson, R. T. (2002) Learning Together and Alone: Overview and Meta-analysis, Asia Pacific Journal of Education, 22, 95- 105. doi.org/10.1080/0218879020220110
Jöreskog, K. G. (1973), A General Method for Estimating a Linear Structural Equation System, in Structural Equation Models in the Social Sciences, ed. A. S. Goldberger and O. D. Duncan, New York: Seminar Press.
Kaliská, L. (2012). Felder`s learning style concept and its index of learning style questionnaire in the slovak conditions. GRANT journal. http://www.grantjournal.com/issue/0101/PDF/0101kaliska.pdf.
Kaliská, L., (2012). Felder’s Learning Style Concept and its Index of Learning Style Questionnaire in the Slovak Conditions. Grant Journal, 1: 52-56.
Kalyuga, S. (2005). Prior knowledge principle in multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 325–337). New York: Cambridge University Press.
Kalyuga, S. (2006). Instructing and testing advanced learners: A cognitive load approach. New York: Nova Science Publishers.
Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24, 852 – 861. doi.org/10.1016/j.chb.2007.02.018
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). Expertise reversal effect. Educational Psychologist, 38, 23–31. doi.org/10.1207/S15326985EP3801_4
Kaput, J. (1999). Representations, inscriptions, descriptions and learning: a kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 265–281. doi.org/10.1016/S0364-0213(99)80062-7
Kearsley, G. (2000). Online education: Learning and technology in cyberspace. Toronnto, Canda: Wadsworth. (chap.1-2) knowledge and pedagogical/psychological knowledge in mathematics. Front.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall
Kuljis, J., & Liu, F. (2005). A Comparison of learning style theories on the suitability for Elearning. Web Technologies, Applications, And Services.
La Garanderie, A. (1993). Les profils pédagogiques. Paris, Bayard, Tunis, Publications de l’ATURED. In A. Chabchoub (Ed.), Enseigner à l’Université de la théorie à la pratique, 2006.
Larkin, J. H. (1981). Cognition of learning physics. American Journal of Physics, 49, 534-541. doi.org/10.1119/1.12667
Leitze, A. R., & Kitt, N. A. (2000). homemade algebra tiles to develop algebra and prealgebra concepts. Mathematics teacher. 462-466.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier, (Ed.), Problems of representations in the teaching and learning of mathematics (33-40). Hillsdale, NJ: Lawrence Erlbaum.
Levin, J.R., Anglin, G.J. and Carney, R.N. (1987) On empirically validating functions of pictures in prose. In: Willows, D.M. and Houghton, H.A., Eds., The Psychology of Illustration: Basic Research, Springer, New York, 51-85. dx.doi.org/10.1007/978-1-4612-4674-9_2.
Lewin, K. (1936). Principles of topological psychology. New York: McGraw-Hill.
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi.org/10.1109/TPC.2014.2312452
MathGains. (n.d.). A concrete Introduction to the abstract concepts of integers and algebra using algebra tiles. 33-39. Retrieved March 8, 2017, from http://www.edugains.ca/resourcesMath/CE/LessonsSupports/Manipulatives/
Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13, 125-139. doi.org/10.1016/S0959-4752(02)00016-6
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R.E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.
Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82, 715-726. dx.doi.org/10.1037/0022-0663.82.4.715
Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312-320. dx.doi.org/10.1037/0022-0663.90.2.312
McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60, 48-58. doi: 10.1080/02701367.1989.10607413
Meltzoff AN, Prinz W, (2002). editors. The imitative mind: Development, evolution and brain bases. Cambridge: Cambridge University Press;
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. dx.doi.org/10.1037/h0043158
Miller, L. (2005). Using learning styles to evaluate computer-based instruction. Computers in Human Behavior, 21, 287-306. doi.org/10.1016/j.chb.2004.02.011
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Chestnut Hill, MA: Boston College. Retrieved from http://timssandpirls.bc.edu/ timss2015/international-results/timss-2015/mathematics/student-engagement-and-attitudes/students-views-on-engaging-teaching-in-mathematics/
Mullis, I.V.S., Martin, M.O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: Boston College.
Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition and Instruction, 16, 173-199.
National Council of Teachers of Mathematics (NCTM). (2002). Principles and Standards forSchool Mathematics. Reston, VA: NCTM.Hartley, S., Gerhardt-Powals, J., Jones, D., McCormack, C., Medley, M. D., Price, B., Reek, M., and Summers, M. K., (1996). Enhancing teaching using the Internet: Report of the working group on the World Wide Web as an interactive teaching resource. In Proceedings of the Conference on Integrating Technology into Computer Science Education. Barcelona, Spain
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Available at: http://www.nctm.org/standards/content.aspx id=16909 [accessed May 05,2018].
National Mathematics Advisory Panel. (2008). Final Report: Foundations for Success. Western initiative for strengthening education in math. WISE Math. http://wisemath.org/us-national-advisory-panel/.
Okur, M., & Bahar, H. H. (2010). Learning styles of primary education prospective mathematics teachers; states of trait-anxiety and academic success. Procedia social and behavioral sciences, 2, 3632-3637. doi.org/10.1016/j.sbspro.2010.03.565
Paas, F. G. W. C., Renkl, A. & Sweller, J. (2004). Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1-8. dx.doi.org/10.1023/B:TRUC.0000021806.17516.d0.
Paredes, P., and Rodríguez, P. (2004). A Mixed Approach to Modelling Learning Styles in Adaptive Educational Hypermedia. Advanced Technology for Learning, 1 (4), 210–215.
Pass, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
Peña, C.-I., Marzo, J.-L., and de la Rosa, J.-L. (2002). Intelligent Agents in a Teaching and Learning Environment on the Web. In V. Petrushin, P. Kommers, Kinshuk & I. Galeev (Eds.), Proceedings of the International Conference on Advanced Learning Technologies. Palmerston North, NZ, IEEE Learning Technology Task Force, pp. 21-27.
Peterson, L., & Peterson, M. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. dx.doi.org/10.1037/h0049234
Picciotto, H. (1990) The Algebra Lab. Sunnyvale, CA: Creative Publications.
Picciotto, H., & Wah, A. (1993). A new algebra: Tool, themes, concepts. Journal of Mathematical Behavour, 12(1), 19-42.
Pintrich, P.R.(2003).Motivational Science Perspective on the Role of Student Motivation in Learning and Teaching Contexts. Journal of educational psychology, 95(4).667–686
Pollock, E., Chandler, P. A. & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12 (1), 61-86.
Price, L. (2004, October). Individual differences in learning: Cognitive control, cognitive style, and learning style. Educational Psychology, 24 (5), 681-698. doi.org/10.1080/0144341042000262971.
Quilici, J. L., & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word problems. Journal of Educational Psychology, 88(1), 144-161. dx.doi.org/10.1037/0022-0663.88.1.144
Relan, A., & Gillani, B. (1997). Web-based instruction and the traditional classrooms: Similarities and differences. In Khan BH(eds.), Web-based Instruction. Englewood Cliffs, NJ: Educational Technology Publications, 417-423.
Russel, D. (2011). The distributive property. Retrieved May 15, 2018, from
http://math.about.com/od/algebra/a/distributive.htm
Ross, J., & Schulz, R. (1999). Can computer-aided instruction accommodate all learners equally? British Journal of Educational Technology, 30 (1), 5-24. doi.org/10.1111/1467-8535.00087
Ryan, R. M., & Deci, E. L., (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology 25, 54–67.
Schnotz, W. & Kürschner, C. (2008). External and internal representations in the acquisition and use of knowledge: visualization effects on mental model construction. Instructional Science, 36 (3), 175–190. doi.org/10.1007/s11251-007-9029-2
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13, 141-156. doi.org/10.1016/S0959-4752(02)00017-8
Schnotz, W., & Kulhavy, R. W. (Eds.). (1994). Comprehension of graphics. Amsterdam: NorthHolland.
Schnotz, W., Ku ̈rschner, C. (2007). A reconsideration of cognitive load theory. Educ Psychol Rev. 19(4), 469–508. doi.org/10.1007/s10648-007-9053-4
Seufert, T., & Brünken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology. 20, 321–331.doi: 10.1002/acp.1248
Shaaron, A. (1999). The functions of multiple representations. Computers & Education, 33, 131-152.
Shang, Y., H. Shi, and S.-S. Chen. 2001. An intelligent distributed environment for active learning. ACM Journal of Educational Resources in Computing, 1 (2).
Shivers, D. G. V., Nowlin, B., &Lanouette, M. (2002). Do multimedia lesson structure and learning styles influence undergraduate writing performance?.College Student Journal,36(1),20-32.
Smith, L., & Renzulli, J. (1984). Learning style preferences: A practical approach for classroom teachers. Theory Into Practice, 23 (1), 44-50.
Stash, N., Cristea, A. and De Bra, P. (2006a). Adaptation to Learning Styles in ELearning: Approach Evaluation. In T. Reeves & S. Yamashita (Eds.), Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education. Chesapeake, VA, AACE, pp. 284-291.
Stash, N., Cristea, A. and De Bra, P. (2006b) ‘Learning styles adaptation language for adaptive hypermedia’, Proceedings of AH’2006 Conference, Dublin, Ireland, pp.323–327.
Steele, D., Palensky, J., Lynch, T., Lacy, N., & Duffy, S. (2002). Learning preferences, computer attitudes, and student evaluation of computerized instruction. Medical Education, 36, 225-232.
Suits, J., & Lagowski, J. (1994). Chemistry problem-solving abilities: Gender, reasoning level and computer-simulated experiments. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Anaheim, California.
Suzuki.J.(1999). Multiplying and dividing polynomials using Geloxia. The college mathematics journal. 30(1), 50-53.
Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20, 498-505. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12, 257-285.
Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295-312.
Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation, 43 (pp. 215-266). San Diego: Academic Press.
Sweller, J. (2004). Intructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Intructional science, 32, 9-31
Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434-458.
Sweller, J., (2007). Human cognitive architecture in J. M. Spector, M. D. Merrill, J. Van Merrienboer, and M. P. Driscoll (Eds.) Handbook of Research for Educational Communications and Technology (3rd Edition). Routledge//Taylor & Francis Group, 85-96.
Sweller, J., Van Merriënboer, J. J. G. & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285. doi.org/10.1023/A:1022193728205
Takacs, J., Reed, W., Wells, J., & Dombrowski, L. (1999, Summer). The effects of online multimedia project development, learning style, and prior computer experiences on teacher’s attitudes toward the Internet and hypermedia. Journal of Research on Computing in Education, 31 (4), 341-355.
Tulbure, C. (2011). Do different learning styles require differentiated teaching strategies? Procedia social and behavioral sciences. 11, 155–159. http://dx.doi.org/10.1016/j.sbspro.2011.01.052
Van Merrienboer, J. J. G. (1997). Training Complex Cognitive Skills: A Four-Component Instructional Design Model for Technical Training, Educational Technology Publications, Englewood Cliffs, NJ.
Van Merrienboer, J. J. G., and Dijkstra, S. (1997). The four-component instructional designmodel for training complex cognitive skills. In Tennyson, R. D., and Schott, F. (eds.), Instructional Design: Theory and Research (Vol. 1), Lawrence Erlbaum, Hillsdale, NJ.
Weinstein, C. E. & Mayer, R. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp.315-327). New York: Macmillan.
Weinstein, C. E., & Underwood, V. L. (1985). Learning strategies: The how of learning. In J. Segal, S. Chipman, & R. Glaser (Eds.), Relating instruction to basic research. Hillsdale, NJ: Lawrence Erlbaum.
Yerushalmy, M. (1991). Students` perceptions of aspects of algebric function using multiple representation software. Journal of Computer Assisted Learning, 7, 42-57.
描述 博士
國立政治大學
教育學系
100152512
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0100152512
資料類型 thesis
dc.contributor.advisor 詹志禹zh_TW
dc.contributor.advisor Chan, Chih-Yuen_US
dc.contributor.author (作者) 張琇如zh_TW
dc.creator (作者) 張琇如zh_TW
dc.date (日期) 2018en_US
dc.date.accessioned 1-十月-2018 12:18:02 (UTC+8)-
dc.date.available 1-十月-2018 12:18:02 (UTC+8)-
dc.date.issued (上傳時間) 1-十月-2018 12:18:02 (UTC+8)-
dc.identifier (其他 識別碼) G0100152512en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/120302-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 教育學系zh_TW
dc.description (描述) 100152512zh_TW
dc.description.abstract (摘要) 本研究旨在探討多項式乘法在數位教材的適性設計,透過三種教材類型(箭頭型、長方形面積型與基因棋盤格型)為前導組織體,探討教材類型、認知引導方式與學習者的學習風格對學習者的認知引導適合度、內在動機與學習效果的影響,也就是探討教材設計對數位教材適性程度的可能影響,希望對數位教材的適性化程度有更深入的了解。
依據結果的分析,本研究主要的研究發現如下:
(1)在學習風格上,學生在類型的分佈上感知視覺型的學習者偏多。此外,直覺文字型與直覺視覺型的學習者較適合箭頭型的引導策略。(2)在內在動機上,三種教材類型的認知引導策略下的內在動機都顯著優於前測的內在動機,認知引導適合度對內在動機具有顯著而正向影響。(3)在認知引導適合度上,適合度越高則有學習效果越好的傾向;在認知負荷上,低認知負荷的學習效果都顯著優於高認知負荷的學習效果。(4)學習效果會受教材類型、認知引導適合度與學習風格的影響。
zh_TW
dc.description.abstract (摘要) The aim of this research is to investigate some adaptive designs of learning material for teaching polynomial multiplication. A purposive sampling of 357 junior high school students participated in the current study. Three types (arrowhead, rectangular area, and genetic checkerboard) of digital learning materials were designed as advance organizers and their relationships with learning styles and effects on appropriateness of cognitive guiding strategies, intrinsic motivation, and learning performance were investigated. It was found that, among four learning styles, the highest percentage of students appeared in the category of “Sensing and Visual.” In addition, students with learning styles of “Intuitive-Verbal” and “Intuitive-Visual” are more adaptive to arrowhead types of learning material than those with other learning styles. It was also found that the level of intrinsic motivation in learning three types of digital materials were higher than those on pretest. Furthermore, the adaptiveness of three types of cognitive guiding strategies is beneficial to intrinsic motivation. Students with low cognitive load performed better than those with high cognitive load. Finally, it was concluded that learning performances were affected by designing types of learning materials, adaptiveness of cognitive guidance and learning styles.en_US
dc.description.tableofcontents 目 次       

摘 要 V
圖目錄 IX
表目錄 XIII
第一章 緒 論 1
第一節 研究動機 1
第二節 研究目的 7
第三節 待答問題 8
第四節 名詞釋義 9
第二章 文獻探討 15
第一節 學習風格 15
第二節 內在動機理論 21
第三節 前導組織體與工作範例 24
第四節 多項式乘法與多元呈現認知管道 32
第五節 認知負荷與基模理論 45
第三章 研究設計與實施 51
第一節 研究架構與變項 51
第二節 研究對象 58
第三節 研究工具 61
第四節 實驗流程 74
第五節 資料統計與處理 80
第四章 研究發現/資料分析 87
第一節 研究背景與現況分析 87
第二節 認知引導適合度受教材類型、學習風格與數學成績的影響 93
第三節 內在動機與教材類型、認知引導適合度與學習風格的關係 113
第四節 學習效果受教材類型、學習風格與認知引導適合度的影響 131
第五節 路徑分析 146
第五章 結論、討論與建議 163
第一節 主要的研究發現 163
第二節 討論 164
第三節 結論 169
第四節 建議 173
參考文獻 177
一、中文部分 177
二、外文部分 180
附錄 197
附錄一、學習風格問卷 197
附錄二、內在動機問卷 199
附錄三、認知相關問卷 201
附錄四、二項式乘法實驗的佈題結構 202
zh_TW
dc.format.extent 3530501 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0100152512en_US
dc.subject (關鍵詞) 認知引導策略zh_TW
dc.subject (關鍵詞) 適性設計zh_TW
dc.subject (關鍵詞) 內在動機zh_TW
dc.subject (關鍵詞) 學習風格zh_TW
dc.subject (關鍵詞) Cognitive guiding strategyen_US
dc.subject (關鍵詞) Adaptive designen_US
dc.subject (關鍵詞) Intrinsic motivationen_US
dc.subject (關鍵詞) Earning styleen_US
dc.title (題名) 數位教材適性設計在國中多項式乘法教學的應用zh_TW
dc.title (題名) The Application of Adaptive Designs of Digital Material for Teaching Polynomial Multiplication in Junior High Schoolen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 參考文獻
一、中文部分
王昌傑(2004)。學習風格對國中生自然科學習成就之影響(未出版之碩士論文)。慈濟大學,花蓮縣。
王弈云(2015)。高雄市高一學生在多項式方程式單元之錯誤類型分析研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
江采姿(2017)。在數位教材融入國文科教學的情境 下學生學習風格與成效差異之研究 ---以台南市某國中為例(未出版之碩士論文)。吳鳳科技大學,嘉義縣。
吳宇穎(2005)。多媒體組合方式與知覺偏好對學習結果的影響(未出版之碩士論文)。國立中正大學,嘉義縣。
吳志敏(2002)。電腦動畫應用於國中代數概念教學之實驗研究(未出版之碩士論文)。國立臺北科技大學,臺北市。
吳清山,2012“國家教育研究院電子報第 38 期) http://epaper.naer.edu.tw/index.php?edm_no=38&content_no=1011
宋曜廷(2000)。先前知識文章結構和多媒體呈現對文章學習的影響。 臺北:國立臺灣師範大學教育心理與輔導研究所博士論文 (未 出 版)。
林憶辰(2007)。探討多項式乘法中物件、變號、項數對國中學生解題的影響(未出版之碩士論文)。國立臺北教育大學,臺北市。
林寶山 (1990)。教學論:理論與方法。臺北市:五南書局。
凃金堂(民100)。運用「範例(worked-out example)」在國小數學問題解決的教學實驗研究。教育心理學報,43卷1期。
翁榮源、陳定威與呂榮順(民98)。Herrmann 學習風格理論對大學生有機化學學習成就之研究。科學教育月刊,318 ,31-47。
張信忠(2008)。國中數學領域「多項式四則運算」單元之線上適性學習模式研發(未出版之碩士論文)。亞洲大學,臺中市。
張春興(1994)。現代心理學。臺北:東華。臺北:東華。
張琇如(2016)。合作式數學學習的內、外在動機路徑分析。臺灣數學教師,37(1),13-30。doi: 10.6610/TJMT.20160126.0
張嵐雄(2011)。國中生在多項式乘除運算的主要錯誤類型及其補救教學之研究(未出版之碩士論文)。國立臺灣師範大學,台北市。
莊秀卿(2013)。多媒體組合與認知風格對國小自然科學學習成效之影響-以水循環單元為例(未出版之碩士論文)。國立臺灣海洋大學,基隆市。
莊煥銘、陳虹真、沈家成(2007)。學習路徑、學習風格與數位學習績效之研究-以國中數學科為例。第十八屆國際資訊管理學術研討會論文集。
陳育民(2003)。學習風格與學習模式對中學生電子化學習成效之影響(未出版之碩士論文)。國立中正大學
陳怡如(2007)。國二學生在多項式的乘除運算單元錯誤類型之分析研究(未出版之碩士論文)。 國立高雄師範大學,高雄市。
陳密桃(2003)。認知負荷理論及其對教學的啟示。國立高雄師範大學 教育系教育學刊,21,29-51。
陳嘉皇(2017)。學童「圖卡覆蓋」代數推理歷程之研究:以三個個案為例,國立嘉義大學國民教育學報,19, 79-107.
陳靜儀(2013)。多媒體組合與認知風格對國小數學科學習成效之研究-以分數乘法為例(未出版之碩士論文)。國立臺灣海洋大學,基隆市。
湯家偉(譯)(民 105)。結構方程模式--偏最小平方法PLS-SEM(原作者:Joseph F. Hair, G. Tomas M. Hult, Christian M. Ringle.)。臺北市:高等教育文化事業有限公司。(原著出版年: 2014)
程鈺涵(2018)。翻轉教室對不同學習風格之國中生其學習成效之影響(未出版之碩士論文)。中原大學,桃園市。
楊淯丞(2014)。以GeoGebra軟體融入教學對高一學生在多項式函數及其圖形進行補救教學之研究(未出版之碩士論文)。國立臺南大學應用數學系碩士班,台南。
楊惠雯(2010)。虛擬教具應用於國中學生學習多項式展開與因式分解之影響(未出版之碩士論文)。國立交通大學,新竹市。
劉耀明(2007)。學習風格在數位學習環境中對學習成效及學習態度影響之研究(未出版之碩士論文)。國立中正大學,嘉義市。
鄭宏偉(2015)。二階段評量對多項式概念教學成效之研究(碩士論文)。國立高雄師範大學,高雄市。
賴文儀(2013)。圖形表徵融入多項式電子白板教學之成效(未出版之碩士論文)。國立中正大學,嘉義縣。
薛圳宏(2002)。發展數學科教學模組之個案研究-以多項式乘法和因式分解單元為例(未出版之碩士論文)。國立高雄師範大學,高雄市。
鍾志忠(2010)。「同儕個別學習輔導」融入「多項式運算」補救教學之研究(未出版之碩士論文)。國立嘉義大學,嘉義市。
簡綜男(1999)。互動式多媒體輔助教材在電腦教學之學習成效影響研究(未出版之碩士論文)。國立中央大學,中壢市。
羅詩凱(2015)。國中資優數學多項式因式分解之解題策略(未出版之碩士論文)。中原大學,桃園市。
關佩云(2017)。比較臺灣和馬來西亞大學生個人屬性、知覺學習和情緒智力對學習風格影響之研究(未出版之碩士論文)。逢甲大學,台中。

二、外文部分
Ainsworth, S. (1999). The functions of multiple representations. Computer & Education, 33(2/3), 131-152. doi.org/10.1016/S0360-1315(99)00029-9.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. dx.doi.org/10.1016/j.learninstruc.2006.03.001.
Amabile, T. M. (1985). Motivation and creativity: Effects of motivational orientation on creative writers. Journal of Personality and Social Psychology, 48, 393–399. dx.doi.org/10.1037/0022-3514.48.2.393.
Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3, 185–201. doi.org/10.1016/1053-4822(93)90012-S.
Amabile, T. M., & Mueller, J. S. 2007. Studying creativity, its processes, and its antecedents: An exploration of the componential theory of creativity. In J. Zhou & C. Shalley (Eds.), Handbook of organizational creativity: 31–62. Mahwah, NJ: Erlbaum.
Amabile, T. M., DeJong, W., & Lepper, M. (1976). Effects of externally imposed deadlines on subsequent intrinsic motivation. Journal of Personality and Social Psychology, 34, 92–98.
Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The Work Preference Inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66. 950–967.
Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological bulletin, 103(3), 411-423. DOI: 10.1037/0033-2909.103.3.411
Arslan, C., Gocmencelebi, S. I., & Tapan, M. S. (2009). Learning and reasoning styles of pre service teachers’: inductive or deductive reasoning on science and mathematics related to their learning style. Procedia Social and Behavioral Sciences, 1, 2460-2465. doi.org/10.1016/j.sbspro.2009.01.432.
Atkinson, R. C., & Shiffrin, R. M. (1971). The control processes of short-term memory. Institute for Mathematical Studies in the Social Sciences, Stanford University.
Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51(5), 267-272. dx.doi.org/10.1037/h0046669.
Ausubel, D. P. (1968). Educational psychology. A cognitive view. New York: Holt, Rinehart and Winston, Inc.
Ausubel, D. P., J. D. Novak, & H. Hanesian, (1978). Educational psychology: A cognitive view. 2nd edition. New York: Holt, Rinehart, and Winston.
Ayersman, D. (1993). An overview of the research on learning styles and hypermedia environments. Paper presented at the 1993 Annual Convention of the Eastern Educational Research Association, Clearwater Beach, Florida.
Ayersman, D. J., and Minden, A. V. (1995). Individual differences, computers and instruction. Computers in Human Behavior, 11 (3), 371–390.
Baddeley AD (1986). Working memory. Oxford, UK: Clarendon Press; Baddeley A. Working memory: Thought and action. Oxford: Oxford University Press.
Baddeley AD, Hitch GJ (1974). Working memory. In: Recent advances in learning and motivation, Vol.8 (Bower GA, ed), 47–90. New York: Academic Press;
Baddeley, A. (1997). Human memory: Theory and practice. East Sussex, UK: Psychology Press.
Bahar, M. (2009). The Relationships between Pupils` Learning Styles and Their Performance in Mini Science Projects. Educational Sciences: Theory and Practice, 9(1), 31-49. https://eric.ed.gov/?id=EJ837775 .
Bandler, R., & Grinder, J. (1975). The structure of magic I. Palo Alto, CA: Science and Behavior Books.
Bandler, R., and J. Grinder. 1979. Frogs into princes. Moab, Utah: Real People Press.
Behr. M., Lesh, R.. Post, T., & Silver, E. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.). The acquisition of mathematical concepts and processes. New York: Academic Press.
Berthold, K., Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101(1), 70–87. Google Scholar, Crossref. dx.doi.org/10.1037/a0013247 .
Bettye C. H. (1999). Using algebra tiles effectively. Prentice-Hall, Inc. New Jersey
Billings, D., & Cobb, K. (1992). Effects of learning style preferences, attitude and GPA on learner achievement using computer assisted interactive videodisc instruction. Journal of Computer-Based Instruction, 19 (1), 12-16.
Birenbaum, M., & Rosenau, S. (2006). Assessment preferences, learning orientation, and learning strategies of pre-service and in-service teachers. Journal of Education for Teaching, 32 (2), 213-225. doi.org/10.1080/02607470600655300.
Blanton M.L., Kaput J.J. (2011) Functional thinking as a route into algebra in the elementary grades. In: Cai J., Knuth E. (eds) Early algebraization. advances in mathematics education. Springer, Berlin, Heidelberg
Bruner, J. S.(1966). Toward a theory of instruction. Cambridge, MA: Harvard University.
Brusilovsky, P. (1999). Adaptive and intelligent technologies for web-based education. KI – Kunstliche Intelligenz, 13, 19–25.
Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted Interaction. 11 (1/2), 87-110. doi.org/10.1023/A:1011143116306
Brusilovsky, P., & Maybury, M. T. (2002). From adaptive hypermedia to the adaptive web. Communications of the ACM, 45(5), 30–33.
Brusilovsky, P., Eklund, J., & Schwarz, E. (1998). Web-based education for all: A tool for development adaptive courseware. Computer Networks and ISDN Systems, 30, 291–300. doi.org/10.1016/S0169-7552(98)00082-8.
Brusilovsky, P., Maybury, M. T. (2002). From adaptive hypermedia to adaptive Web. In P., Brusilovsky,M. T. Maybury, (eds.), Communications of the ACM 45 (5), Special Issue on the Adaptive Web, 31-33.
Burris, S, Kitchel, T., Molina, Q., Vincent, S. & Warner, W. (2008). The language of learning styles. Techniques: Connecting Education & Careers, 83(2), 44-49.
Can, Ş. (2010). Determination of the learning styles of the pre-school teacher candidates (The case of Mugla University, Turkey). Procedia social and behavioral sciences, 2, 4137-4141. doi.org/10.1016/j.sbspro.2010.03.653
Carlson, H. (1991). Learning style and program design in interactive multimedia. Educational Technology Research and Development, 39 (3), 41-48. doi.org/10.1007/BF02296437
Carver, C. A., Howard, R. A., & Lane, W. D. (1999). Addressing different learning styles through course hypermedia. IEEE Transactions on Education, 42(1), 33–38. DOI: 10.1109/13.746332
Chang, H. J. (2006). Adaptation in Depth: The Use of ‘Cognitive Object-Oriented Teaching Model’. ED-MEDIA 2006--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Orlando, FL, USA.
Chang, H. J. (2012). Cognizable, Learnable, Expressible, Accessible, and Reasonable Model in Mathematical Thinking, Reasoning and Problem Solving. The Asian Technology Conference in Mathematics, 2012, Advanced Technology Council in Mathematics, Bangkok, Thailand, December 16-20.
Chang, H. J. (2013). Evolutions of Thinking, Reasoning, and constructing in Learning Polynomial operations. The Asian Technology Conference in Mathematics_ ATCM-Korea chapter, 2013, Advanced Technology Council in Mathematics, CheongJu, South Korea, August 7-10.
Chang, H. J. (2014). The cognitive object-oriented representation in learning and evaluating processes. 7th International Cognitive Load Theory Conference (ICLTC), Taipei, Taiwan, June 24-26.
Chang, H. J. (2015). Beyond the Representation: Cognition in Manipulative Learning Objects within Learning Simple Equations. International Journal of Innovations in Engineering and Technology, 5(11), 855-859. doi.org/10.7763/IJIET.2015.V5.626.
Chang, H. J. (2016). The Temporal Path Analysis Model of Intrinsic and Extrinsic motivation in cooperative learning environment. International Journal of Learning and Teaching, 2(2), 133-139. doi: 10.18178/ijlt.2.2. doi.org/10.7763/IJIET.2015.V5.626 .
Chang, H.J, Tseng, S. S.(2003). Design of an object-oriented teaching model for Three-Dimensional Geometry, The 8TH Asia Technology Conference in Mathematic, 2003, Advanced Technology Council in Mathematics, Hsinchu, Taiwan. 404~413.
Chang, H.J. (2005). Enhancing web-based instruction/learning: the use of ‘Cognitive, Object-Oriented Teaching Model’. The 10th Asian Technology Conference in Mathematics, 2005, Advanced Technology Council in Mathematics, Cheong-Ju, South Korea, 213-222
Chang, H.J. (2007a). Adaptation-in-Depth Educational System within the Rule Base Reasoning. ED-MEDIA 2007--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Vancouver, BC, Canada
Chang, H.J. (2007b). The Cognitive, Interactive, Transparent Teaching Interface: An Application to Teach Coordinate Plane. 科學/數學之閱讀、寫作與論證國際研討會, 彰化 (國立彰化師範大學,國立台東大學 主辦)
Chang, H.J. (2007c). Beyond the Web-Based Cognitive and Interactive Metacognition Interface within Teaching Similar Triangles. The 12th Asian Technology Conference in Mathematics, 2007, Advanced Technology Council in Mathematics, Taipei, Taiwan, December16-20, 2007.
Chang, H.J. (2007d). Cognitive Requirement and management of Cognitive Object-Oriented Teaching Model. The 12th Asian Technology Conference in Mathematics, 2007, Advanced Technology Council in Mathematics, Taipei, Taiwan, December16-20, 2007.
Chang, H.J. (2008). Supporting Fault-Tolerance Learning within Cognitive, Object-Oriented Teaching Model, 2008--World Conference on Educational Multimedia, Hypermedia & Telecommunications, Association for the Advancement of Computing in Education, Vienna, Austria, June 30-July 4, 2008.
Chang, Y. C., Kao, W.Y., Chu, C. P., Chiu, C. H. (2009) learning style classification mechanism for e-learning, Computers & Education, 53(2), 273-285, doi.10.1016/j.compedu.2009.02.008
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive science, 5, 121-152. doi.org/10.1207/s15516709cog0502_2.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149-210. doi.org/10.1007/BF01320076
Clark, R. E. (2001). A summary of disagreements with the ‘mere vehicles’ argument. In R. E. Clark (Ed.), Learning from media: Arguments, analysis, and evidence (pp. 125–136). Greenwich, CT: Information Age Publishing
Clark, R.C., Nguyen, F., and Sweller, J. (2006). Efficiency in learning: evidence-based guidelines to manage cognitive load. San Francisco: Pfeiffer
Colom, R., Abad, F. J., Quiroga, M., Shih, P. C., & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584–606. doi.org/10.1016/j.intell.2008.01.002
Csikszentmihalyi, M. (1996). Creativity, flow and the psychology of discovery and invention. New York: Harper Collins.
Csikszentmihalyi, Mihaly (1975). Beyond Boredom and Anxiety: Experiencing Flow in Work and Play, San Francisco: Jossey-Bass.
Csikszentmihalyi, Mihaly (1978) Intrinsic Rewards and Emergent Motivation in The Hidden Costs of Reward: New Perspectives on the Psychology of Human Motivation eds Lepper, Mark R; Greene, David, Erlbaum: Hillsdale: NY 205-216
Davidson, G., & Savenye, W. (1992, Spring). How do learning styles relate to performance in a computer applications course? Journal of Research on Computing in Education, 24 (3), 348-357. doi.org/10.1080/08886504.1992.10782016
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115. DOI: 10.1037/h0030644
Deci, E. L. (1972) Intrinsic motivation, extrinsic reinforcement, and inequity. Journal of Personality and Social Psychology, 22, 113-120. dx.doi.org/10.1037/h0032355
Deci, E. L. (1975). Intrinsic motivation. New York: Plenum.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627– 668.
Dunn, R., & Bruno, A. (1985, September). What does the research on learning styles have to do with Mario? The Clearing House, 59 (1), 9-12. doi.org/10.1080/00098655.1985.9955590
Dunn, R., & Dunn, K. (1994). Teaching young children through their individual learning styles-practical approaches for grades K-2. Massachusetts: Simon & Schuster.
Dunn, R., and Dunn, K. (1974). Learning Style as a Criterion for Placement in Alternative Programs. Phi Delta Kappan, 56 (4), 275-278.
Eilam, B. & Poyas, Y. (2008). Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and Instruction, 16, 368-378. doi.org/10.1016/j.learninstruc.2007.07.003.
Eisenberger, R., & Cameron, J. (1996). Detrimental effects of reward: Reality or myth? Journal of the American Psychological Association, 51, 1153-1166. doi.org/10.1177/108705479700200115
Ellis, D., Ford, N., & Wood, F. (1993, February). Hypertext and learning styles. The Electronic Library, 11 (1), 13-18. doi.org/10.1108/eb045203
Essalmi, F., Ayed, L. J. B., Jemni, M., Kinshuk, & Graf, S. (2010). A fully personalization strategy of E-learning scenarios. Computers in Human Behavior, 26(4), 581-591. doi.org/10.1016/j.chb.2009.12.010
Felder, R. M. & Soloman, B. A. (1993). Learning styles and strategies. Retrieved April 7, 2018, From North Carolina State University, http://www4.ncsu.edu/unity/lockers/users/f/felder/public//ILSdir/styles.htm
Felder, R. M. (n.d.) Are learning style invalid? Retrieved April 7, 2018, From North Carolina State University, http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/LS_Validity(On-Course).pdf
Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674–681. Preceded by a preface in 2002: http://www.ncsu.edu/felderpublic/ Papers/LS-1988.pdf
Felder, R. M., & Silverman, L. K. (2016, Dec) Index of Learning Styles Questionnaire. Retrieved from North Carolina State University. https://www.webtools.ncsu.edu/learningstyles/
Fenrich, P. (2005). Creating Instructional Multimedia Solutions: Practical Guidelines for the Real World. Santa Rosa, CA: Informing Science Press.
Fenrich, P. (2006). Getting practical with learning styles in “Live” and computer-based training settings. Issues in informing science and information technology. 3. 233-242. doi.org/10.28945/886.
Fleming, N.D. (1995). I`m different; not dumb. Modes of presentation (VARK) in the tertiary classroom, in Zelmer,A., (ed.) Research and Development in Higher Education, Proceedings of the 1995 Annual Conference of the Higher Education and Research Development Society of Australasia (HERDSA),HERDSA, Volume 18, 308 – 313.
Gagne, E. D. (1985). The cognitive psychology of school learning. Boston, MA: Little, Brown and Company.
Gagne´, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26, 331–362. doi.org/10.1002/job.322
Garger, S. & Guild, P. (1984). Learning Styles: The Crucial Differences. Curriculum Review, 9-12.
Geisert, G., & Dunn, R. (1991). Effective use of computers: Assignments based on individual learning styles. The Clearing House, 64 (4), 219-224.
Given, B. K. (2000). Learning Styles: A guide for teachers and parents. South Coast Highway Oceanside: Learning Forum Publication. doi.org/10.1002/dys.193
Giorgi, P., (2011).On polynomial multiplication in chebyshev basis, IEEE Transactions on Computers, 61, 780-789. doi:10.1109/TC. 2011.110
Goldin, G. & Janvier, C. (1998). Representation and the psychology of mathematics education. The Journal of Mathematics Behaviour, 17 (1), 1-4. doi.org/10.1016/S0732-3123(99)80057-1
Goldin, G. & Shteingold, (2001). System of representations and the development of mathematical concepts. In A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics (pp. 1-23). Yearbook 2001. Reston, VA: NCTM.
Graf, S., Viola, S.R., Leo, T., Kinshuk, (2007). In-Depth Analysis of the Felder-Silverman Learning Style Dimensions, Journal of Research on Technology in Education, 40(1), 79-93.
Gregorc, A. F. (1979). Learning/teaching styles: Their nature and effects. In National Association of Secondary School Principals (Eds.), Student learning styles: Diagnosing and prescribing programs (pp. 19-26). Reston, VA: NASSP.
Gregorc, A. F. (1985). Inside styles: Beyond the basics. Columbia, CT: Gregorc Associates.
Guild, P., & Garger, S. (1985). Marching to different drummers. Alexandria, VA: Association for Supervision and Curriculum Development.
Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd edition. Thousand Oaks, CA: Sage.
Hair, J. F., Ringle, C.M. Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet, Journal of Marketing Theory and Practice (JMTP), 19, Issue 2, pp. 139-152. DOI: 10.2753/MTP1069-6679190202
Hair, J. F., Sarstedt, M. Torsten M. Pieper, and Christian M. Ringle. (2012a). The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Planning 45 (5-6). 320-340. doi.org/10.1016/j.lrp.2012.09.008
Hair, J. F., Sarstedt, M., Christian M., Ringle, C. M., and Jeannette A. Mena. (2012b). An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science 40 (3). 414-433. doi.org/10.1007/s11747-011-0261-6
Hardman, K.O. & Cowan, N. (2016). Reasoning and memory: People make varied use of the information available in working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 42(5), 700-22. doi: 10.1037/xlm0000197
Harr, N. Eichler, A. and Renkl, A. (2014) Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics. Front. Psychol. (5), 924. doi.org/10.3389/fpsyg.2014.00924.
Harr, N., Eichler, A., and Renkl, A. (2014). Integrating pedagogical content doi: 10.3389/fpsyg.2014.00924
Heinze, A., Star, J. R., & Verschaffel, L. (2009). Flexible and adaptive use of strategies and representations in mathematics education. Zentralblatt Didaktik für Mathematik (ZDM), 41(5), 535-540. doi: 10.1007/s11858-009-0214-4.
Honey, P. and Mumford, A. (1986a). The Manual of Learning Styles, Peter Honey Associates. Honey, P. and Mumford, A. (1986b). Learning Styles Questionnaire, Peter Honey Publications Ltd.
Honey, P., & Mumford, A. (1982). The manual of learning styles. Maidenhead
Jitendra, A.K., Hoff, K., & Beck. M.M. (1999). Teaching middle school students with learning disabilities to solve word problems using a schema-based approach. Remedial and Special Education, 20(1), 50-64. doi.org/10.1177/074193259902000108
Jitendra, A.K., Star, J.R., Rodriguez, M., Lindell, M., & Someki, F. (2011). Improving students’ proportional thinking using schema-based instruction. Learning and Instruction, 21(6), 731-745. doi: 10.1016/j.learninstruc.2011.04.002
Jitendra, A.K., Star, J.R., Starosta, K., Leh, J.M., Sood, S., Caskie, G., Hughes, C.L., & Mack, T.R. (2009). Improving seventh grade students’ learning of ratio and proportion: The role of schema-based instruction. Contemporary Educational Psychology, 34(3), 250-264. doi: 10.1016/j.cedpsych.2009.06.001
Johnson, D. W. and Johnson, R. T. (2002) Learning Together and Alone: Overview and Meta-analysis, Asia Pacific Journal of Education, 22, 95- 105. doi.org/10.1080/0218879020220110
Jöreskog, K. G. (1973), A General Method for Estimating a Linear Structural Equation System, in Structural Equation Models in the Social Sciences, ed. A. S. Goldberger and O. D. Duncan, New York: Seminar Press.
Kaliská, L. (2012). Felder`s learning style concept and its index of learning style questionnaire in the slovak conditions. GRANT journal. http://www.grantjournal.com/issue/0101/PDF/0101kaliska.pdf.
Kaliská, L., (2012). Felder’s Learning Style Concept and its Index of Learning Style Questionnaire in the Slovak Conditions. Grant Journal, 1: 52-56.
Kalyuga, S. (2005). Prior knowledge principle in multimedia learning. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 325–337). New York: Cambridge University Press.
Kalyuga, S. (2006). Instructing and testing advanced learners: A cognitive load approach. New York: Nova Science Publishers.
Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24, 852 – 861. doi.org/10.1016/j.chb.2007.02.018
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). Expertise reversal effect. Educational Psychologist, 38, 23–31. doi.org/10.1207/S15326985EP3801_4
Kaput, J. (1999). Representations, inscriptions, descriptions and learning: a kaleidoscope of windows. Journal of Mathematical Behavior, 17(2), 265–281. doi.org/10.1016/S0364-0213(99)80062-7
Kearsley, G. (2000). Online education: Learning and technology in cyberspace. Toronnto, Canda: Wadsworth. (chap.1-2) knowledge and pedagogical/psychological knowledge in mathematics. Front.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall
Kuljis, J., & Liu, F. (2005). A Comparison of learning style theories on the suitability for Elearning. Web Technologies, Applications, And Services.
La Garanderie, A. (1993). Les profils pédagogiques. Paris, Bayard, Tunis, Publications de l’ATURED. In A. Chabchoub (Ed.), Enseigner à l’Université de la théorie à la pratique, 2006.
Larkin, J. H. (1981). Cognition of learning physics. American Journal of Physics, 49, 534-541. doi.org/10.1119/1.12667
Leitze, A. R., & Kitt, N. A. (2000). homemade algebra tiles to develop algebra and prealgebra concepts. Mathematics teacher. 462-466.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier, (Ed.), Problems of representations in the teaching and learning of mathematics (33-40). Hillsdale, NJ: Lawrence Erlbaum.
Levin, J.R., Anglin, G.J. and Carney, R.N. (1987) On empirically validating functions of pictures in prose. In: Willows, D.M. and Houghton, H.A., Eds., The Psychology of Illustration: Basic Research, Springer, New York, 51-85. dx.doi.org/10.1007/978-1-4612-4674-9_2.
Lewin, K. (1936). Principles of topological psychology. New York: McGraw-Hill.
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi.org/10.1109/TPC.2014.2312452
MathGains. (n.d.). A concrete Introduction to the abstract concepts of integers and algebra using algebra tiles. 33-39. Retrieved March 8, 2017, from http://www.edugains.ca/resourcesMath/CE/LessonsSupports/Manipulatives/
Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13, 125-139. doi.org/10.1016/S0959-4752(02)00016-6
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R.E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.
Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82, 715-726. dx.doi.org/10.1037/0022-0663.82.4.715
Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90(2), 312-320. dx.doi.org/10.1037/0022-0663.90.2.312
McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 60, 48-58. doi: 10.1080/02701367.1989.10607413
Meltzoff AN, Prinz W, (2002). editors. The imitative mind: Development, evolution and brain bases. Cambridge: Cambridge University Press;
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. dx.doi.org/10.1037/h0043158
Miller, L. (2005). Using learning styles to evaluate computer-based instruction. Computers in Human Behavior, 21, 287-306. doi.org/10.1016/j.chb.2004.02.011
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 International Results in Mathematics. Chestnut Hill, MA: Boston College. Retrieved from http://timssandpirls.bc.edu/ timss2015/international-results/timss-2015/mathematics/student-engagement-and-attitudes/students-views-on-engaging-teaching-in-mathematics/
Mullis, I.V.S., Martin, M.O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: Boston College.
Mwangi, W., & Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognition and Instruction, 16, 173-199.
National Council of Teachers of Mathematics (NCTM). (2002). Principles and Standards forSchool Mathematics. Reston, VA: NCTM.Hartley, S., Gerhardt-Powals, J., Jones, D., McCormack, C., Medley, M. D., Price, B., Reek, M., and Summers, M. K., (1996). Enhancing teaching using the Internet: Report of the working group on the World Wide Web as an interactive teaching resource. In Proceedings of the Conference on Integrating Technology into Computer Science Education. Barcelona, Spain
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Available at: http://www.nctm.org/standards/content.aspx id=16909 [accessed May 05,2018].
National Mathematics Advisory Panel. (2008). Final Report: Foundations for Success. Western initiative for strengthening education in math. WISE Math. http://wisemath.org/us-national-advisory-panel/.
Okur, M., & Bahar, H. H. (2010). Learning styles of primary education prospective mathematics teachers; states of trait-anxiety and academic success. Procedia social and behavioral sciences, 2, 3632-3637. doi.org/10.1016/j.sbspro.2010.03.565
Paas, F. G. W. C., Renkl, A. & Sweller, J. (2004). Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32, 1-8. dx.doi.org/10.1023/B:TRUC.0000021806.17516.d0.
Paredes, P., and Rodríguez, P. (2004). A Mixed Approach to Modelling Learning Styles in Adaptive Educational Hypermedia. Advanced Technology for Learning, 1 (4), 210–215.
Pass, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
Peña, C.-I., Marzo, J.-L., and de la Rosa, J.-L. (2002). Intelligent Agents in a Teaching and Learning Environment on the Web. In V. Petrushin, P. Kommers, Kinshuk & I. Galeev (Eds.), Proceedings of the International Conference on Advanced Learning Technologies. Palmerston North, NZ, IEEE Learning Technology Task Force, pp. 21-27.
Peterson, L., & Peterson, M. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. dx.doi.org/10.1037/h0049234
Picciotto, H. (1990) The Algebra Lab. Sunnyvale, CA: Creative Publications.
Picciotto, H., & Wah, A. (1993). A new algebra: Tool, themes, concepts. Journal of Mathematical Behavour, 12(1), 19-42.
Pintrich, P.R.(2003).Motivational Science Perspective on the Role of Student Motivation in Learning and Teaching Contexts. Journal of educational psychology, 95(4).667–686
Pollock, E., Chandler, P. A. & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12 (1), 61-86.
Price, L. (2004, October). Individual differences in learning: Cognitive control, cognitive style, and learning style. Educational Psychology, 24 (5), 681-698. doi.org/10.1080/0144341042000262971.
Quilici, J. L., & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word problems. Journal of Educational Psychology, 88(1), 144-161. dx.doi.org/10.1037/0022-0663.88.1.144
Relan, A., & Gillani, B. (1997). Web-based instruction and the traditional classrooms: Similarities and differences. In Khan BH(eds.), Web-based Instruction. Englewood Cliffs, NJ: Educational Technology Publications, 417-423.
Russel, D. (2011). The distributive property. Retrieved May 15, 2018, from
http://math.about.com/od/algebra/a/distributive.htm
Ross, J., & Schulz, R. (1999). Can computer-aided instruction accommodate all learners equally? British Journal of Educational Technology, 30 (1), 5-24. doi.org/10.1111/1467-8535.00087
Ryan, R. M., & Deci, E. L., (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology 25, 54–67.
Schnotz, W. & Kürschner, C. (2008). External and internal representations in the acquisition and use of knowledge: visualization effects on mental model construction. Instructional Science, 36 (3), 175–190. doi.org/10.1007/s11251-007-9029-2
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13, 141-156. doi.org/10.1016/S0959-4752(02)00017-8
Schnotz, W., & Kulhavy, R. W. (Eds.). (1994). Comprehension of graphics. Amsterdam: NorthHolland.
Schnotz, W., Ku ̈rschner, C. (2007). A reconsideration of cognitive load theory. Educ Psychol Rev. 19(4), 469–508. doi.org/10.1007/s10648-007-9053-4
Seufert, T., & Brünken, R. (2006). Cognitive load and the format of instructional aids for coherence formation. Applied Cognitive Psychology. 20, 321–331.doi: 10.1002/acp.1248
Shaaron, A. (1999). The functions of multiple representations. Computers & Education, 33, 131-152.
Shang, Y., H. Shi, and S.-S. Chen. 2001. An intelligent distributed environment for active learning. ACM Journal of Educational Resources in Computing, 1 (2).
Shivers, D. G. V., Nowlin, B., &Lanouette, M. (2002). Do multimedia lesson structure and learning styles influence undergraduate writing performance?.College Student Journal,36(1),20-32.
Smith, L., & Renzulli, J. (1984). Learning style preferences: A practical approach for classroom teachers. Theory Into Practice, 23 (1), 44-50.
Stash, N., Cristea, A. and De Bra, P. (2006a). Adaptation to Learning Styles in ELearning: Approach Evaluation. In T. Reeves & S. Yamashita (Eds.), Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education. Chesapeake, VA, AACE, pp. 284-291.
Stash, N., Cristea, A. and De Bra, P. (2006b) ‘Learning styles adaptation language for adaptive hypermedia’, Proceedings of AH’2006 Conference, Dublin, Ireland, pp.323–327.
Steele, D., Palensky, J., Lynch, T., Lacy, N., & Duffy, S. (2002). Learning preferences, computer attitudes, and student evaluation of computerized instruction. Medical Education, 36, 225-232.
Suits, J., & Lagowski, J. (1994). Chemistry problem-solving abilities: Gender, reasoning level and computer-simulated experiments. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Anaheim, California.
Suzuki.J.(1999). Multiplying and dividing polynomials using Geloxia. The college mathematics journal. 30(1), 50-53.
Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20, 498-505. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12, 257-285.
Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295-312.
Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation, 43 (pp. 215-266). San Diego: Academic Press.
Sweller, J. (2004). Intructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Intructional science, 32, 9-31
Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434-458.
Sweller, J., (2007). Human cognitive architecture in J. M. Spector, M. D. Merrill, J. Van Merrienboer, and M. P. Driscoll (Eds.) Handbook of Research for Educational Communications and Technology (3rd Edition). Routledge//Taylor & Francis Group, 85-96.
Sweller, J., Van Merriënboer, J. J. G. & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285. doi.org/10.1023/A:1022193728205
Takacs, J., Reed, W., Wells, J., & Dombrowski, L. (1999, Summer). The effects of online multimedia project development, learning style, and prior computer experiences on teacher’s attitudes toward the Internet and hypermedia. Journal of Research on Computing in Education, 31 (4), 341-355.
Tulbure, C. (2011). Do different learning styles require differentiated teaching strategies? Procedia social and behavioral sciences. 11, 155–159. http://dx.doi.org/10.1016/j.sbspro.2011.01.052
Van Merrienboer, J. J. G. (1997). Training Complex Cognitive Skills: A Four-Component Instructional Design Model for Technical Training, Educational Technology Publications, Englewood Cliffs, NJ.
Van Merrienboer, J. J. G., and Dijkstra, S. (1997). The four-component instructional designmodel for training complex cognitive skills. In Tennyson, R. D., and Schott, F. (eds.), Instructional Design: Theory and Research (Vol. 1), Lawrence Erlbaum, Hillsdale, NJ.
Weinstein, C. E. & Mayer, R. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp.315-327). New York: Macmillan.
Weinstein, C. E., & Underwood, V. L. (1985). Learning strategies: The how of learning. In J. Segal, S. Chipman, & R. Glaser (Eds.), Relating instruction to basic research. Hillsdale, NJ: Lawrence Erlbaum.
Yerushalmy, M. (1991). Students` perceptions of aspects of algebric function using multiple representation software. Journal of Computer Assisted Learning, 7, 42-57.
zh_TW
dc.identifier.doi (DOI) 10.6814/DIS.NCCU.EDU.010.2018.F02en_US