學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 基於同態加密的相等性驗證之通用架構設計
Generic Construction on Equality Test Based on Homomorphic Encryptions
作者 周為涵
Chou, Wei-Han
貢獻者 左瑞麟
周為涵
Chou, Wei-Han
關鍵詞 同態加密
秘密計算
相等性驗證
日期 2018
上傳時間 12-二月-2019 16:00:16 (UTC+8)
摘要 雙方相等性驗證是指在不洩漏任何自身私密資訊的情況下,進行秘密計算來了解彼此的資訊是否相等。然而在大多數現有協議中,多數為不公平的協定,也就是說其中的一方(被告知方)只能相信另一方(告知方)所告知的比較結果而無從驗證。雖然已有學者提出了一些可以雙方驗證的提案機制,但是這些協議或因加密演算法限制導致實作困難,或因必須使用指定加密演算法限制導致協定彈性較低。因此,在本論文中,將提出一套新的雙方相等性驗證的協議,具備相同的雙方相等性驗證的功能,但對加密演算法限制較低,適用於所有可多次進行同態運算的加法同態加密演算法或乘法同態加密演算法,實作及運算也較為有效率。提出協議後,再以理論證明協議的安全性及正確性,並提出該協議的相關應用,最後分析協議的時間複雜度及討論其效能。
Two-party equality testing protocol allows two entities to compare their secrete information without leaking any information except the comparison result. In previous works the comparison result can only be obtained by one entity (ie. informer) and then the entity informs the result to the other entity ( ie. receiver). The receiver has to accept the received result since he has no way to verify its correctness. Although some scholars have proposed some proposal mechanisms that can be verified by both parties, Those protocols may be difficult to implement due to limitations of the encryption algorithm, or the contract flexibility may be low due to the necessity of using the specified encryption algorithm. Therefore, in this thesis,we propose a new two-party equality testing protocol. Our protocol has the same function of mutual equality verification, but has lower restrictions on the encryption algorithm and is applicable to almost all Addition homomorphic encryption algorithm or multiplicative homomorphic encryption algorithm. It is also more efficient in implementation and operation. After the agreement is proposed, the security and correctness of the protocol are proved by theory, and the related applications of the protocol are proposed. Finally, the time complexity of the protocol is analyzed and its performance is discussed.
參考文獻 [1] Andrew C. Yao, "Protocols for Secure Computations", Proceedings of 21stAnnual IEEE Symposium on Foundations of Computer Science, 1982.
[2]T. ElGamal, “ A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, vol. 31, pp. 469-472, 1985.
[3] Pascal Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”, Proceedings of Advances in Cryptology (Eurocrypt’99), LNCS vol. 1592, pp.l 223-238, 1999.
[4]C.Gentry, "Fully homomorphic encryption using ideal lattices", Proceedings of STOC ‘09, ACM, pages 169-178, 2009.
[5] S. Goldwasser and S. Micali, "Probabilistic encryption & how to play mental poker keeping secret all partial information", Proceedings of Annual ACM Symposium on Theory of Computing, pp.365-377, 1982.
[6] R. Li and C.K. Wu, "Co-operatice private equality test", International Journal of Network Security, vol.1 No.3, PP.149-153, 2005.
[7] Cheng-Feng Wu, "A Study on the Design of Two-Party Equality Testing Protocol and Its Applications"
[8] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM Journal on Computing, Vol. 26, No. 5, pp. 1484-1509, 1997
[9] Peter Mell and Tim Grance, “The NIST Definition of Cloud Computing”
[10] J. Benaloh, “Dense Probabilistic encryption”, Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120-128, 1994.
[11] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems”, Comm. ACM vol.21, pp. 120-126, 1977.
[12] D. Boneh, EJ. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts”, Proceedings of Thepry of Cryptography (TCC), pp. 325-341, 2005.
[13] M. Hirt and K. Sako, “Efficient receipt-Free voting based on homomorphic encryption”, Proceedings of (Eurocrypt’00), LNCS vol. 1807, pp.539-556, 2000.
[14] B. Hemenway and R. Ostrovsky, “Lossy trapdoor functions from smooth homomorphic hasgh proof systems”, In Electronic Colloquium on Computational Complexity, Report TR09-127, 2009.
[15] C. Gentry and Z. Ramzan, “Single-database private information retrieval with constant communication rate”, Proceedings of ICALP 2005, pp.803-815, 2005.
[16] J. Bernstein and Tenja Lange, “Post-Quantum cryptography”, Nature 549, 188-194, 2017.
[17] S. F. Ciou, “Two-party equality test with privacy protection”, Master’s Thesis, 2011. (in Chinese)
[18] S. F. Ciou, R.Tso, “A privacy preserved two-party equality testing protocol”, Proceedings of ICGEC 2011, pp. 220-223, 2011.
[19] Naoki Ogura, Go Yamamoto, Tetsutaro Kobayashi, Shigenori Uchiyama, “An Improvement of Key Generation Algorithm for Gentry’s Homomorphic Encryption Scheme” International Workshop on Security(IWSEC 2010). Pp. 70-83, 2010.
[20] Peter Scholl and Nigel P. Smart, “Improved key generation for Gentry’s fully homomorphic encryption scheme”, IMACC’11, pp.10-22, 2011.
[21] Craig Gentry and Shai Halevi, ”Implementing Gentry’s Fully-Homomorphic Encryption Scheme” Proceedings of Advances in Cryptology (Eurocrypt’2011) pp.129-148
描述 碩士
國立政治大學
資訊科學系碩士在職專班
104971004
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0104971004
資料類型 thesis
dc.contributor.advisor 左瑞麟zh_TW
dc.contributor.author (作者) 周為涵zh_TW
dc.contributor.author (作者) Chou, Wei-Hanen_US
dc.creator (作者) 周為涵zh_TW
dc.creator (作者) Chou, Wei-Hanen_US
dc.date (日期) 2018en_US
dc.date.accessioned 12-二月-2019 16:00:16 (UTC+8)-
dc.date.available 12-二月-2019 16:00:16 (UTC+8)-
dc.date.issued (上傳時間) 12-二月-2019 16:00:16 (UTC+8)-
dc.identifier (其他 識別碼) G0104971004en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/122332-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系碩士在職專班zh_TW
dc.description (描述) 104971004zh_TW
dc.description.abstract (摘要) 雙方相等性驗證是指在不洩漏任何自身私密資訊的情況下,進行秘密計算來了解彼此的資訊是否相等。然而在大多數現有協議中,多數為不公平的協定,也就是說其中的一方(被告知方)只能相信另一方(告知方)所告知的比較結果而無從驗證。雖然已有學者提出了一些可以雙方驗證的提案機制,但是這些協議或因加密演算法限制導致實作困難,或因必須使用指定加密演算法限制導致協定彈性較低。因此,在本論文中,將提出一套新的雙方相等性驗證的協議,具備相同的雙方相等性驗證的功能,但對加密演算法限制較低,適用於所有可多次進行同態運算的加法同態加密演算法或乘法同態加密演算法,實作及運算也較為有效率。提出協議後,再以理論證明協議的安全性及正確性,並提出該協議的相關應用,最後分析協議的時間複雜度及討論其效能。zh_TW
dc.description.abstract (摘要) Two-party equality testing protocol allows two entities to compare their secrete information without leaking any information except the comparison result. In previous works the comparison result can only be obtained by one entity (ie. informer) and then the entity informs the result to the other entity ( ie. receiver). The receiver has to accept the received result since he has no way to verify its correctness. Although some scholars have proposed some proposal mechanisms that can be verified by both parties, Those protocols may be difficult to implement due to limitations of the encryption algorithm, or the contract flexibility may be low due to the necessity of using the specified encryption algorithm. Therefore, in this thesis,we propose a new two-party equality testing protocol. Our protocol has the same function of mutual equality verification, but has lower restrictions on the encryption algorithm and is applicable to almost all Addition homomorphic encryption algorithm or multiplicative homomorphic encryption algorithm. It is also more efficient in implementation and operation. After the agreement is proposed, the security and correctness of the protocol are proved by theory, and the related applications of the protocol are proposed. Finally, the time complexity of the protocol is analyzed and its performance is discussed.en_US
dc.description.tableofcontents 1 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
1.3研究貢獻 2
1.4論文架構 3
2 背景知識 4
2.1 ElGamal加密演算法 4
2.2 Paillier加密演算法 4
2.3同態加密 4
2.4 加法同態加密 5
2.5乘法同態加密 5
2.6 雙重加密演算法 6
2.7 語意安全 6
3 既有秘密計算相等性驗證協定 7
3.1李姓學者與武姓學者的協定 7
3.2邱姓學者的協定 8
3.3吳的協定 9
4雙方相等性驗證協定 11
4.1基礎協定 11
4.2基礎協定討論 19
4.3雙方相等性驗證協定 19
5 安全性分析 32
5.1假設Alice為攻擊者 32
5.2假設Bob為攻擊者 32
6 相關應用討論 34
6.1登入驗證系統 34
6.2線上刷卡驗證系統 35
7時間複雜度分析 38
7.1基礎協定的時間複雜度 38
7.2雙方相等性驗證協定的時間複雜度 38
8 結論 39
zh_TW
dc.format.extent 1552999 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0104971004en_US
dc.subject (關鍵詞) 同態加密zh_TW
dc.subject (關鍵詞) 秘密計算zh_TW
dc.subject (關鍵詞) 相等性驗證zh_TW
dc.title (題名) 基於同態加密的相等性驗證之通用架構設計zh_TW
dc.title (題名) Generic Construction on Equality Test Based on Homomorphic Encryptionsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Andrew C. Yao, "Protocols for Secure Computations", Proceedings of 21stAnnual IEEE Symposium on Foundations of Computer Science, 1982.
[2]T. ElGamal, “ A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans. Inform. Theory, vol. 31, pp. 469-472, 1985.
[3] Pascal Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”, Proceedings of Advances in Cryptology (Eurocrypt’99), LNCS vol. 1592, pp.l 223-238, 1999.
[4]C.Gentry, "Fully homomorphic encryption using ideal lattices", Proceedings of STOC ‘09, ACM, pages 169-178, 2009.
[5] S. Goldwasser and S. Micali, "Probabilistic encryption & how to play mental poker keeping secret all partial information", Proceedings of Annual ACM Symposium on Theory of Computing, pp.365-377, 1982.
[6] R. Li and C.K. Wu, "Co-operatice private equality test", International Journal of Network Security, vol.1 No.3, PP.149-153, 2005.
[7] Cheng-Feng Wu, "A Study on the Design of Two-Party Equality Testing Protocol and Its Applications"
[8] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM Journal on Computing, Vol. 26, No. 5, pp. 1484-1509, 1997
[9] Peter Mell and Tim Grance, “The NIST Definition of Cloud Computing”
[10] J. Benaloh, “Dense Probabilistic encryption”, Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120-128, 1994.
[11] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems”, Comm. ACM vol.21, pp. 120-126, 1977.
[12] D. Boneh, EJ. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts”, Proceedings of Thepry of Cryptography (TCC), pp. 325-341, 2005.
[13] M. Hirt and K. Sako, “Efficient receipt-Free voting based on homomorphic encryption”, Proceedings of (Eurocrypt’00), LNCS vol. 1807, pp.539-556, 2000.
[14] B. Hemenway and R. Ostrovsky, “Lossy trapdoor functions from smooth homomorphic hasgh proof systems”, In Electronic Colloquium on Computational Complexity, Report TR09-127, 2009.
[15] C. Gentry and Z. Ramzan, “Single-database private information retrieval with constant communication rate”, Proceedings of ICALP 2005, pp.803-815, 2005.
[16] J. Bernstein and Tenja Lange, “Post-Quantum cryptography”, Nature 549, 188-194, 2017.
[17] S. F. Ciou, “Two-party equality test with privacy protection”, Master’s Thesis, 2011. (in Chinese)
[18] S. F. Ciou, R.Tso, “A privacy preserved two-party equality testing protocol”, Proceedings of ICGEC 2011, pp. 220-223, 2011.
[19] Naoki Ogura, Go Yamamoto, Tetsutaro Kobayashi, Shigenori Uchiyama, “An Improvement of Key Generation Algorithm for Gentry’s Homomorphic Encryption Scheme” International Workshop on Security(IWSEC 2010). Pp. 70-83, 2010.
[20] Peter Scholl and Nigel P. Smart, “Improved key generation for Gentry’s fully homomorphic encryption scheme”, IMACC’11, pp.10-22, 2011.
[21] Craig Gentry and Shai Halevi, ”Implementing Gentry’s Fully-Homomorphic Encryption Scheme” Proceedings of Advances in Cryptology (Eurocrypt’2011) pp.129-148
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.EMCS.001.2019.B02en_US