學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 RLWE同態加密技術落實於二元分類器
RLWE-Based Homomorphic Data Encryption for Binary Classifier
作者 黃為德
HUANG, WEI-TE
貢獻者 胡毓忠
Hu, Yuh-Jong
黃為德
HUANG, WEI-TE
關鍵詞 Ring learning with errors
同態加密
機器學習
二元分類器
支援向量機
決策樹
Ring learning with errors
Homomorphic encryption
Machine learning
Binary classifier
Support vector machine
Decision tree
日期 2019
上傳時間 7-三月-2019 11:59:36 (UTC+8)
摘要 隨著公有雲技術的運用日漸廣泛,現今企業越來越傾向將對外資通服務建立在雲端伺服器上,然而現行雲端服務的安全機制只涵蓋傳輸階段與儲存階段,而每個階段必須運用不同的加密演算法;且在資料進行運算時仍必須還原回明文,從而導致運算期間有資料外洩的疑慮。本研究希望藉由以Ring-Learning With Errors(RLWE)為基礎的同態加密(Homomorphic Encryption)技術,以單一種加密機制達成資料在傳輸、儲存與運算三個階段的保護。
本研究使用Medical Datasets Heart Disease來對支援向量機(Support Vector Machine, SVM)及決策樹(Decision Tree)等兩類機器學習演算法的二元分類器訓練,再透過同態加密技術來對模型內的係數與輸入資料進行加密後,進行密文間的各類同態運算,並將密文運算結果解密後,與明文、未加密的運算結果進行比較,確認在加密情形下運算得出的分類結果是否能保持正確,並就加密運算的額外時間成本與空間成本提出質化與量化的比較分析。
With the increasing use of public cloud technology, enterprises are increasingly inclined to establish foreign-funded services on the cloud server. However, the current security mechanism of cloud services only covers the transmission phase and storage phase, and each phase must use different Encryption algorithm; and the data must still be restored back to the plaintext when the operation is performed, resulting in doubts about data leakage during the operation. This study hopes to achieve the protection of data in the three stages of transmission, storage and operation by a single encryption mechanism by using Homomorphic Encryption based on Ring-Learning With Errors (RLWE).

In this study, Medical Datasets Heart Disease is used to train binary classifiers of two types of machine learning algorithms, such as Support Vector Machine (SVM) and Decision Tree, and then through homomorphic encryption technology. After the coefficient is encrypted with the input data, various homomorphic operations between the ciphertexts are performed, and the ciphertext operation results are decrypted, and compared with the plaintext and unencrypted operation results, and the classification result obtained by the operation in the encryption case is confirmed. Whether it can be kept correct, and a comparative analysis of the quality and cost of the extra time cost and space cost of the encryption operation.
參考文獻 [1] M. J. Cox, “Cve-2014-0160 (heartbleed) issue,” 2014, https://plus.google.com/+MarkJCox/posts/TmCbp3BhJma.
[2] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Applications.Springer Publishing Company, Incorporated, 2014.
[3] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Foundations of Secure Computation, Academia Press, pp.169–179, 1978.
[4] S. Halevi, Homomorphic Encryption. Cham: Springer International Publishing, 2017, pp. 219–276. [Online]. Available: https://doi.org/10.1007/978-3-319-57048-8_5
[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.[Online]. Available: http://doi.acm.org/10.1145/1536414.1536440
[6] S. Goldwasser and S. Micali, “Probabilistic encryption.” J. Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984. [Online]. Available: http://dblp.uni-trier.de/db/journals/jcss/jcss28.html#GoldwasserM84
[7] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” in Proceedings of the29th Annual International Conference on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 24–43. [Online]. Available: http://dx.doi.org/10. 1007/978-3-642-13190-5_2
[8] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic encryption over the integers with shorter public keys.” IACRCryptology ePrint Archive, vol. 2011, p. 441, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/iacr/iacr2011.html#CoronMNT11
[9] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proceedings of the Thirty-seventh Annual ACM Symposiumon Theory of Computing, ser. STOC ’05. New York, NY, USA: ACM, 2005, pp. 84–93. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060603
[10] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in In Proc. of EUROCRYPT, volume 6110 of LNCS. Springer, 2010, pp. 1–23.
[11] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-lwe and security for key dependent messages,” in Advances in Cryptology – CRYPTO 2011, P. Rogaway, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 505–524.
[12] ——, “Efficient fully homomorphic encryption from (standard) lwe,” in Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations of Computer Science, ser. FOCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 97–106. [Online]. Available: http://dx.doi.org/10.1109/FOCS.2011.12
[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ser. ITCS ’12. New York, NY, USA: ACM, 2012, pp. 309–325. [Online]. Available: http://doi.acm.org/10.1145/2090236.2090262
[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proceedings of the Third Conference on Theory of Cryptography, ser. TCC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 265–284. [Online]. Available: http://dx.doi.org/10.1007/11681878_14
[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,” in Advances in Cryptology — CRYPTO 2001, J. Kilian, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–18.
[16] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 457–473.
[17] S. Halevi and V. Shoup, “Algorithms in helib,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol. 8616. Springer, 2014, pp. 554–571.
[18] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based homomorphic encryption,” in Public-Key Cryptography - PKC 2013, vol. 7778, 2013, p. 1.
[19] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog overhead,” in Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 465–482. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-29011-4_28
[20] S. Halevi and V. Shoup, “Faster homomorphic linear transformations in helib,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol. 10991. Springer, 2018, pp. 93–120.
[21] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savas, “Low depth circuits for efficient homomorphic sorting,” IACR Cryptology ePrint Archive, vol. 2015, p. 274,
2015.
描述 碩士
國立政治大學
資訊科學系碩士在職專班
105971002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105971002
資料類型 thesis
dc.contributor.advisor 胡毓忠zh_TW
dc.contributor.advisor Hu, Yuh-Jongen_US
dc.contributor.author (作者) 黃為德zh_TW
dc.contributor.author (作者) HUANG, WEI-TEen_US
dc.creator (作者) 黃為德zh_TW
dc.creator (作者) HUANG, WEI-TEen_US
dc.date (日期) 2019en_US
dc.date.accessioned 7-三月-2019 11:59:36 (UTC+8)-
dc.date.available 7-三月-2019 11:59:36 (UTC+8)-
dc.date.issued (上傳時間) 7-三月-2019 11:59:36 (UTC+8)-
dc.identifier (其他 識別碼) G0105971002en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/122461-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系碩士在職專班zh_TW
dc.description (描述) 105971002zh_TW
dc.description.abstract (摘要) 隨著公有雲技術的運用日漸廣泛,現今企業越來越傾向將對外資通服務建立在雲端伺服器上,然而現行雲端服務的安全機制只涵蓋傳輸階段與儲存階段,而每個階段必須運用不同的加密演算法;且在資料進行運算時仍必須還原回明文,從而導致運算期間有資料外洩的疑慮。本研究希望藉由以Ring-Learning With Errors(RLWE)為基礎的同態加密(Homomorphic Encryption)技術,以單一種加密機制達成資料在傳輸、儲存與運算三個階段的保護。
本研究使用Medical Datasets Heart Disease來對支援向量機(Support Vector Machine, SVM)及決策樹(Decision Tree)等兩類機器學習演算法的二元分類器訓練,再透過同態加密技術來對模型內的係數與輸入資料進行加密後,進行密文間的各類同態運算,並將密文運算結果解密後,與明文、未加密的運算結果進行比較,確認在加密情形下運算得出的分類結果是否能保持正確,並就加密運算的額外時間成本與空間成本提出質化與量化的比較分析。
zh_TW
dc.description.abstract (摘要) With the increasing use of public cloud technology, enterprises are increasingly inclined to establish foreign-funded services on the cloud server. However, the current security mechanism of cloud services only covers the transmission phase and storage phase, and each phase must use different Encryption algorithm; and the data must still be restored back to the plaintext when the operation is performed, resulting in doubts about data leakage during the operation. This study hopes to achieve the protection of data in the three stages of transmission, storage and operation by a single encryption mechanism by using Homomorphic Encryption based on Ring-Learning With Errors (RLWE).

In this study, Medical Datasets Heart Disease is used to train binary classifiers of two types of machine learning algorithms, such as Support Vector Machine (SVM) and Decision Tree, and then through homomorphic encryption technology. After the coefficient is encrypted with the input data, various homomorphic operations between the ciphertexts are performed, and the ciphertext operation results are decrypted, and compared with the plaintext and unencrypted operation results, and the classification result obtained by the operation in the encryption case is confirmed. Whether it can be kept correct, and a comparative analysis of the quality and cost of the extra time cost and space cost of the encryption operation.
en_US
dc.description.tableofcontents 1 導論 1
1.1 研究動機 1
1.2 研究目的 2
2 研究背景 4
2.1 雲端服務的資料保護 4
2.2 同態加密 5
2.2.1 Ideal Lattice Based HE 7
2.2.2 Integer-Based HE 11
2.2.3 RLWE-Based HE 11
3 相關研究 14
3.1 差分隱私 14
3.2 程式混淆 15
3.3 功能加密 16
4 研究架構與方法設計 17
4.1 研究架構 17
4.2 分類模型訓練及產出 18
4.3 數值調整與效能最佳化 19
4.3.1 小數與負數處理 19
4.3.2 選擇適當的同態加密參數並進行加密及運算 20
4.4 同態應運算流程設計 21
4.4.1 支援向量機 21
4.4.2 決策樹 23
zh_TW
dc.format.extent 1835156 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105971002en_US
dc.subject (關鍵詞) Ring learning with errorszh_TW
dc.subject (關鍵詞) 同態加密zh_TW
dc.subject (關鍵詞) 機器學習zh_TW
dc.subject (關鍵詞) 二元分類器zh_TW
dc.subject (關鍵詞) 支援向量機zh_TW
dc.subject (關鍵詞) 決策樹zh_TW
dc.subject (關鍵詞) Ring learning with errorsen_US
dc.subject (關鍵詞) Homomorphic encryptionen_US
dc.subject (關鍵詞) Machine learningen_US
dc.subject (關鍵詞) Binary classifieren_US
dc.subject (關鍵詞) Support vector machineen_US
dc.subject (關鍵詞) Decision treeen_US
dc.title (題名) RLWE同態加密技術落實於二元分類器zh_TW
dc.title (題名) RLWE-Based Homomorphic Data Encryption for Binary Classifieren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] M. J. Cox, “Cve-2014-0160 (heartbleed) issue,” 2014, https://plus.google.com/+MarkJCox/posts/TmCbp3BhJma.
[2] X. Yi, R. Paulet, and E. Bertino, Homomorphic Encryption and Applications.Springer Publishing Company, Incorporated, 2014.
[3] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy homomorphisms,” Foundations of Secure Computation, Academia Press, pp.169–179, 1978.
[4] S. Halevi, Homomorphic Encryption. Cham: Springer International Publishing, 2017, pp. 219–276. [Online]. Available: https://doi.org/10.1007/978-3-319-57048-8_5
[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.[Online]. Available: http://doi.acm.org/10.1145/1536414.1536440
[6] S. Goldwasser and S. Micali, “Probabilistic encryption.” J. Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984. [Online]. Available: http://dblp.uni-trier.de/db/journals/jcss/jcss28.html#GoldwasserM84
[7] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” in Proceedings of the29th Annual International Conference on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 24–43. [Online]. Available: http://dx.doi.org/10. 1007/978-3-642-13190-5_2
[8] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic encryption over the integers with shorter public keys.” IACRCryptology ePrint Archive, vol. 2011, p. 441, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/iacr/iacr2011.html#CoronMNT11
[9] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in Proceedings of the Thirty-seventh Annual ACM Symposiumon Theory of Computing, ser. STOC ’05. New York, NY, USA: ACM, 2005, pp. 84–93. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060603
[10] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in In Proc. of EUROCRYPT, volume 6110 of LNCS. Springer, 2010, pp. 1–23.
[11] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-lwe and security for key dependent messages,” in Advances in Cryptology – CRYPTO 2011, P. Rogaway, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 505–524.
[12] ——, “Efficient fully homomorphic encryption from (standard) lwe,” in Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations of Computer Science, ser. FOCS ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 97–106. [Online]. Available: http://dx.doi.org/10.1109/FOCS.2011.12
[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ser. ITCS ’12. New York, NY, USA: ACM, 2012, pp. 309–325. [Online]. Available: http://doi.acm.org/10.1145/2090236.2090262
[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proceedings of the Third Conference on Theory of Cryptography, ser. TCC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 265–284. [Online]. Available: http://dx.doi.org/10.1007/11681878_14
[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,” in Advances in Cryptology — CRYPTO 2001, J. Kilian, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–18.
[16] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 457–473.
[17] S. Halevi and V. Shoup, “Algorithms in helib,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol. 8616. Springer, 2014, pp. 554–571.
[18] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based homomorphic encryption,” in Public-Key Cryptography - PKC 2013, vol. 7778, 2013, p. 1.
[19] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog overhead,” in Proceedings of the 31st Annual International Conference on Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 465–482. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-29011-4_28
[20] S. Halevi and V. Shoup, “Faster homomorphic linear transformations in helib,” in CRYPTO (1), ser. Lecture Notes in Computer Science, vol. 10991. Springer, 2018, pp. 93–120.
[21] G. S. Çetin, Y. Doröz, B. Sunar, and E. Savas, “Low depth circuits for efficient homomorphic sorting,” IACR Cryptology ePrint Archive, vol. 2015, p. 274,
2015.
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.EMCS.004.2019.B02en_US