學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 貝氏方法應用於連鎖商店銷售額預測
Application of Bayesian Method for Chain Store Sales Prediction
作者 謝家銘
Xie, Jia-Ming
貢獻者 翁久幸
Weng, Chui-Hsing
謝家銘
Xie, Jia-Ming
關鍵詞 貝氏方法
James-Stein 估計
Gibbs sampler
Shrinkage
Bayesian method
James-Stein estimator
Gibbs sampler
Shrinkage
日期 2018
上傳時間 2-五月-2019 14:41:35 (UTC+8)
摘要 連鎖銷售商店動輒上百家分店,商店銷售額的預測是重要的目的,一般是以個別分店的銷售資料,找出統計模型,對個別分店的銷售額做預測是一種簡單的方法,然而,因為這些分店之間可能有某些相似性,若能找到一個可以同時運用多個店家資料的統計模型,可能有機會改進模型的預測能力與模型係數的適切性,有助商家因應節日及進行促銷時的行銷策略。本論文使用回歸分析對銷售資料進行預測,對不同店家的銷售額所做的回歸分析的參數,用貝氏方法來做進一步的處理,透過將多家店家的回歸係數縮減(shrinkage),以達到較合理的參數,此方法的主要目的是尋找較合理的參數,其次則是探討迴歸係數縮減下模型預測能力的表現。
本研究發現在多家分店的原始迴歸係數相當接近時,使用貝氏方法的改進空間有限,其中階層貝氏方法能夠將若干家商店資訊納入,能對迴歸係數產生較大的縮減,因此有機會改進預測能力,而James-Stein 估計並沒有參考多家商店資訊,因此對於迴歸係數產生較小的縮減,故其預測能力並無太大改進。
The prediction of sales is important. It is common to do regression analysis to predict sales for a store using its own data. However, for a chain with hundreds of stores, it may be possible to improve prediction accuracy and obtain more reasonable regression coefficients by combining data from different stores. We propose to achieve these goals by using two shrinkage methods: hierarchical Bayesian method and James-Stein estimator.
We found that the shrinkage methods yield limited improvement when the regression coefficients in separate models are rather close. Moreover, the hierarchical method incorporated data from different stores and improve predictions, while James-Stein estimator did not improve much.
參考文獻 1. Jun Shao, Mathematical Statistics, 1999
2. Robert C. Blattberg and Edward I. George,1991, Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations
3. Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.Rubin 2013, Bayesian Data Analysis, Third Edition
4. Donald B. Rubin 1980, Using Empirical Bayes Techniques in the Law School Validity Studies
5. Andrew McCallum, Ronald Rosenfeld, Tom Mitchell, Andrew Y. Ng, Improving Text Classification by Shrinkage in a Hierarchy of Classes
6. John Barnard, Robert McCulloch and Xiao-Li Meng 1999, Modeling Covariance Matrices in Terms of standard deviations and correlations, with application to shrinkage
描述 碩士
國立政治大學
統計學系
105354002
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105354002
資料類型 thesis
dc.contributor.advisor 翁久幸zh_TW
dc.contributor.advisor Weng, Chui-Hsingen_US
dc.contributor.author (作者) 謝家銘zh_TW
dc.contributor.author (作者) Xie, Jia-Mingen_US
dc.creator (作者) 謝家銘zh_TW
dc.creator (作者) Xie, Jia-Mingen_US
dc.date (日期) 2018en_US
dc.date.accessioned 2-五月-2019 14:41:35 (UTC+8)-
dc.date.available 2-五月-2019 14:41:35 (UTC+8)-
dc.date.issued (上傳時間) 2-五月-2019 14:41:35 (UTC+8)-
dc.identifier (其他 識別碼) G0105354002en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/123222-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 105354002zh_TW
dc.description.abstract (摘要) 連鎖銷售商店動輒上百家分店,商店銷售額的預測是重要的目的,一般是以個別分店的銷售資料,找出統計模型,對個別分店的銷售額做預測是一種簡單的方法,然而,因為這些分店之間可能有某些相似性,若能找到一個可以同時運用多個店家資料的統計模型,可能有機會改進模型的預測能力與模型係數的適切性,有助商家因應節日及進行促銷時的行銷策略。本論文使用回歸分析對銷售資料進行預測,對不同店家的銷售額所做的回歸分析的參數,用貝氏方法來做進一步的處理,透過將多家店家的回歸係數縮減(shrinkage),以達到較合理的參數,此方法的主要目的是尋找較合理的參數,其次則是探討迴歸係數縮減下模型預測能力的表現。
本研究發現在多家分店的原始迴歸係數相當接近時,使用貝氏方法的改進空間有限,其中階層貝氏方法能夠將若干家商店資訊納入,能對迴歸係數產生較大的縮減,因此有機會改進預測能力,而James-Stein 估計並沒有參考多家商店資訊,因此對於迴歸係數產生較小的縮減,故其預測能力並無太大改進。
zh_TW
dc.description.abstract (摘要) The prediction of sales is important. It is common to do regression analysis to predict sales for a store using its own data. However, for a chain with hundreds of stores, it may be possible to improve prediction accuracy and obtain more reasonable regression coefficients by combining data from different stores. We propose to achieve these goals by using two shrinkage methods: hierarchical Bayesian method and James-Stein estimator.
We found that the shrinkage methods yield limited improvement when the regression coefficients in separate models are rather close. Moreover, the hierarchical method incorporated data from different stores and improve predictions, while James-Stein estimator did not improve much.
en_US
dc.description.tableofcontents 誌謝 1
中文摘要 2
ABSTRACT 3
LIST OF FIGURES 6
LIST OF TABLES 7
第一章 緒論 8
第一節 研究背景 8
第二節 研究目的 8
第三節 研究架構 9
第二章 文獻探討 10
第三章 研究方法 12
第一節 Shrinkage 估計 12
第二節 馬可夫蒙地卡羅(Markove chain Monte Carlo) 14
第四章 實證分析 19
第一節 數據模擬 19
第二節 Rossmann Store資料集 23
第三節 實驗結果 26
第五章 結論 44
第一節 結論 44
第二節 後續探討 45
文獻參考 46
zh_TW
dc.format.extent 2177061 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105354002en_US
dc.subject (關鍵詞) 貝氏方法zh_TW
dc.subject (關鍵詞) James-Stein 估計zh_TW
dc.subject (關鍵詞) Gibbs samplerzh_TW
dc.subject (關鍵詞) Shrinkagezh_TW
dc.subject (關鍵詞) Bayesian methoden_US
dc.subject (關鍵詞) James-Stein estimatoren_US
dc.subject (關鍵詞) Gibbs sampleren_US
dc.subject (關鍵詞) Shrinkageen_US
dc.title (題名) 貝氏方法應用於連鎖商店銷售額預測zh_TW
dc.title (題名) Application of Bayesian Method for Chain Store Sales Predictionen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. Jun Shao, Mathematical Statistics, 1999
2. Robert C. Blattberg and Edward I. George,1991, Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations
3. Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.Rubin 2013, Bayesian Data Analysis, Third Edition
4. Donald B. Rubin 1980, Using Empirical Bayes Techniques in the Law School Validity Studies
5. Andrew McCallum, Ronald Rosenfeld, Tom Mitchell, Andrew Y. Ng, Improving Text Classification by Shrinkage in a Hierarchy of Classes
6. John Barnard, Robert McCulloch and Xiao-Li Meng 1999, Modeling Covariance Matrices in Terms of standard deviations and correlations, with application to shrinkage
zh_TW
dc.identifier.doi (DOI) 10.6814/THE.NCCU.STAT.004.2019.B03en_US