學術產出-學位論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 共享單車企業的綠色閉環供應鏈模型設計
A Green Closed-loop Supply Chain Model for Sharing Bicycle Enterprises
作者 季意
Ji, Yi
貢獻者 林我聰
Lin, Woo-Tsong
季意
Ji, Yi
關鍵詞 共享經濟
共享單車
綠色閉環供應鏈
多目標整數規劃模型
利潤最大化
碳排放最小化
NSGA-II演算法
Pareto解集
sharing economy
sharing bicycle
green closed-loop supply chain
multi-objective integer programming model
profit maximization
carbon minimization
NSGA-II Algorithm
Pareto solution set
日期 2019
上傳時間 5-九月-2019 15:45:44 (UTC+8)
摘要 共享經濟是源於實踐的全新經濟模式,當共享的理念慢慢深入人心,各種基於共享理念的商業模式紛紛出現,並顯示出強大的發展趨勢和潛力。共享單車作為共享經濟中備受矚目的一員,從誕生開始就伴隨著爭議,共享單車能夠解決城市交通“最後一公里”的問題,能夠促進資源合理分配推動環保出行,但在發展過程中卻造成很多意想不到的社會問題。本研究通過為共享單車企業設計適合的綠色閉環供應鏈來解決這些企業現存的種種問題。通過分析共享單車企業的模式與特點,建立出以最大化利潤以及最小化鏈上碳排放量為目標的多目標整數規劃模型,模型求解的部分使用NSGA-II演算法尋找模型的Pareto解集,通過求得的解集可以幫助共享單車企業妥善設計、建設和安排閉環供應鏈上的設施以及開啟狀況並能夠合理控制鏈上節點間的流量,以獲得系統利潤最大化且盡可能減少系統的碳排放。
Sharing economy is a brand-new economic model which originates from practice. When the concept of sharing is deeply rooted in people`s mind, various business models based on sharing concept emerge one after another and show strong development trend and potential. As a member of the sharing economy, sharing bicycle has been controversial since its birth. Sharing bicycle can solve the problem of "the last kilometer" of urban traffic, and can promote the rational allocation of resources to promote environmental protection travel. But in the process of development, it has caused many unexpected social problems. In this paper, we design a green closed-loop supply chain for bicycle-sharing enterprises to solve the existing problems of these enterprises. A multi-objective integer programming model is established to maximize the profit and minimize the carbon emissions in the chain by analyzing the models and characteristics of bicycle-sharing enterprises The part of the solution of the model uses NSGA-II Algorithm to find the Pareto solution set of the model The solution set can help the bicycle-sharing enterprise to design, construct and arrange the facilities and the open status of the closed-loop supply chain and control the flow between the nodes To profit maximization the system and minimize the carbon footprint of the system.
參考文獻 1. Aras et al.(2008).Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles,Eur. J. Oper. Res., 191 2008, pp. 1223-1240
2. Abdallah et al.(2012). Green supply chains with carbon trading and environmental sourcing: Formulation and life cycle assessment, Applied Mathematical Modelling, Vol. 36 (9), pp. 4271-4285
3. Bazan et al. 2016) A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling,Volume 40, Issues 5–6, March 2016, pp. 4151-4178
4. Chemla et al. 2013). Bike sharing systems: Solving the static rebalancing problem, Discrete Optimization,Volume 10, Issue 2, May 2013, pp.120-146
5. Cohen&Welling,(2015). Transformation Properties of Learned Visual Representations, In International Conference on Learning Representations (ICLR), 2015
6. Corne, et al.(2000). The Pareto envelope-based selection algorithm for multiobjective optimization, Proceedings of sixth international conference on parallel problem solving from Nature, 18–20 September, 2000, Springer, Paris, France
7. Deb et al.(2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, Vol. 6 (2), pp. 182-197
8. Deb et al.(2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,Proceedings of sixth international conference on parallel problem solving from nature, 18–20 September, 2000, Springer, Paris, France
9. Diabat et al.(2013).Strategic closed-loop facility location problem with carbon market trading,IEEE Trans. Eng. Manag., 60 (2) (2013), pp. 398-408
10. Fahimnia et al. (2013).The impact of carbon pricing on a closed-loop supply chain: an Australian case study, Journal of Cleaner Prod., 59 (13), pp. 210-225
11. Fleischmann et al.(1997). Quantitative models for reverse logistics: A review, European Journal of Operational Research,Volume 103, Issue 1, 16 November 1997, pp. 1-17
12. Fleischmann et al. (2001). The impact of product recovery on logistics network design,Prod. Oper. Manag., Vol. 10 , pp. 156-173
13. Fonseca&Fleming,(1993).Genetic algorithms for multiobjective optimization: formulation, discussion and generalization, Proceedings of the ICGA-93: fifth international conference on genetic algorithms, 17–22 July 1993, Morgan Kaufmann, Urbana-Champaign, IL, USA
14. Guide&Van(2001). WassenhoveManaging product returns for remanufacturing, Prod. Oper. Manag., Vol. 10 (2), pp. 142-155
15. Goldberg,(1989), Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Longman Publishing Co., Boston, MA, USA
16. Gui et al.(2016). Efficient Implementation of Collective Extended Producer Responsibility Legislation,Manage. Sci., Vol. 62 (4), pp. 1098-1123
17. Govindan et al.(2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future, European Journal of Operational Research,Volume 240, Issue 3, 1 February 2015, pp. 603-626
18. Holland(1975)Adaptation in natural and artificial systems,University of Michigan Press, Ann Arbor Kapetanopoulou , Tagaras , (2010) . Drivers and obstacles of product recovery activities in the Greek industry, Int. J. Oper. Prod. Manag. Vol. 31 (2) 148-166
19. Jayaramana et al.(2003). The design of reverse distribution networks: Models and solution procedures European Journal of Operational ResearchVolume 150, Issue 1, 1 October 2003, Pages 128-149
20. Ko&Evans(2007)A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs,Computers & Operations Research, 34 (2) (2007), pp. 346-366
21. Kadambala et al.,(2017). Closed loop supply chain networks: Designs for energy and time value efficiency, International Journal of Production Economics,Volume 183, Part B, January 2017, pp. 382-393
22. Krikke,(2011). Impact of closed-loop network configurations on carbon footprints: A case study in copiers, Resources, Conservation and Recycling,Volume 55, Issue 12, October 2011,pp. 1196-1205
23. Konak et al.(2006). Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety,Volume 91, Issue 9, September 2006, pp.992-1007
24. Lee,(2009),Dynamic network design for reverse logistics operations under uncertaintyTransp. Res. Part E, 45 (2009), pp. 61-71
25. Min (2006). A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns, Omega Vol.34, pp.56–69
26. Soleimani et al.(2013). Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 68 (1–4), pp. 917-931
27. Pishvaee et al. (2009),A stochastic optimization model for integrated forward/reverse logistics network design J. Manuf. Syst., 28 (2009), pp. 107-114
28. Pishvaee,&Kianfar(2010),Reverse logistics network design using simulated annealing Int. J. Adv. Manuf. Technol., 47 (2010), pp. 269-281
29. RoHS (2008).Working with EEE producers to ensure RoHS compliance through the European Union, URL http://www.rohs.eu/english/index.html.
30. Rahman&Subramanian,(2012). Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., Vol. 140 pp. 239-248
31. Su(2014). Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines, Computers & Industrial Engineering, Vol. 72 , pp. 72-83
32. Shi et al.(2017). Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm, Applied Mathematical Modelling,Volume 45, May 2017, pp. 14-30
33. Walther&Spengler, (2005). Impact of WEEE-directive on reverse logistics in Germany, Int. J. Phys. Distrib. Logist. Manag. 35 337–361
34. Özkır&Başlıgil, (2013). Multi-objective optimization of closed-loop supply chains in uncertain environment, Journal of Cleaner Production, Vol. 41, pp. 114-125
35. Zitzler&Thiele,(1999).Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,IEEE Trans Evol Comput, 3 (4) (1999), pp. 257-271
36. Zitzler et al.(2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evol Comput, 8 (2), pp. 173-195
37. Zailini et al.(2012), Sustainable supply chain management (SSCM) in Malaysia: A survey, International Journal of Production Economics,Volume 140, Issue 1, November 2012, pp. 330-340
38. Zhou&Gen(1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem, Eur. J. Oper. Res., Vol. 114, pp. 141-152
39. 李敏蓮,(2017)。共享單車市場調研與分析。財經界,pp.121-123。
40. 劉亞楠,(2017)。共享單車發展研究分析。時代金融,No.03,pp.251-254。
41. 常山,宋瑞,何世偉,黎浩東,(2018)。共享單車故障車輛回收模型。吉林大學學報,Vol.48,No.6 pp.1677-1683。
42. 郭鹏,林祥枝,黄艺,涂思明,白晓明,杨雅雯,叶林,(2017)。共享单车:互联网技术与公共服务中的协同治理。公共管理學報,No.3 ,pp.1-10。
43. 湯天波,吳曉隽,(2015)。共享经济:“互联网+”下的颠覆性经济模式。科學發展,No.12,pp.78-85。
44. 胡靜靜,(2018)。共享經濟:國內外文獻綜述與研究展望。改革與戰略No.34,pp.134-138。
45. 中國信通院,2017年共享單車經濟社會影響報告,上網日期2018年2月6日,檢自:http://www.caict.ac.cn/sytj/201802/t20180206_172836.htm
46. 李成東,摩拜1000,哈罗800,ofo的车500块到底有什么差别?,上網日期2018年4月17日,檢自:https://zhuanlan.zhihu.com/p/35768121
47. 企鵝智酷調查,2016年12月,檢自https://tech.qq.com/a/20170228/019218.htm
描述 碩士
國立政治大學
資訊管理學系
106356042
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106356042
資料類型 thesis
dc.contributor.advisor 林我聰zh_TW
dc.contributor.advisor Lin, Woo-Tsongen_US
dc.contributor.author (作者) 季意zh_TW
dc.contributor.author (作者) Ji, Yien_US
dc.creator (作者) 季意zh_TW
dc.creator (作者) Ji, Yien_US
dc.date (日期) 2019en_US
dc.date.accessioned 5-九月-2019 15:45:44 (UTC+8)-
dc.date.available 5-九月-2019 15:45:44 (UTC+8)-
dc.date.issued (上傳時間) 5-九月-2019 15:45:44 (UTC+8)-
dc.identifier (其他 識別碼) G0106356042en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125534-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理學系zh_TW
dc.description (描述) 106356042zh_TW
dc.description.abstract (摘要) 共享經濟是源於實踐的全新經濟模式,當共享的理念慢慢深入人心,各種基於共享理念的商業模式紛紛出現,並顯示出強大的發展趨勢和潛力。共享單車作為共享經濟中備受矚目的一員,從誕生開始就伴隨著爭議,共享單車能夠解決城市交通“最後一公里”的問題,能夠促進資源合理分配推動環保出行,但在發展過程中卻造成很多意想不到的社會問題。本研究通過為共享單車企業設計適合的綠色閉環供應鏈來解決這些企業現存的種種問題。通過分析共享單車企業的模式與特點,建立出以最大化利潤以及最小化鏈上碳排放量為目標的多目標整數規劃模型,模型求解的部分使用NSGA-II演算法尋找模型的Pareto解集,通過求得的解集可以幫助共享單車企業妥善設計、建設和安排閉環供應鏈上的設施以及開啟狀況並能夠合理控制鏈上節點間的流量,以獲得系統利潤最大化且盡可能減少系統的碳排放。zh_TW
dc.description.abstract (摘要) Sharing economy is a brand-new economic model which originates from practice. When the concept of sharing is deeply rooted in people`s mind, various business models based on sharing concept emerge one after another and show strong development trend and potential. As a member of the sharing economy, sharing bicycle has been controversial since its birth. Sharing bicycle can solve the problem of "the last kilometer" of urban traffic, and can promote the rational allocation of resources to promote environmental protection travel. But in the process of development, it has caused many unexpected social problems. In this paper, we design a green closed-loop supply chain for bicycle-sharing enterprises to solve the existing problems of these enterprises. A multi-objective integer programming model is established to maximize the profit and minimize the carbon emissions in the chain by analyzing the models and characteristics of bicycle-sharing enterprises The part of the solution of the model uses NSGA-II Algorithm to find the Pareto solution set of the model The solution set can help the bicycle-sharing enterprise to design, construct and arrange the facilities and the open status of the closed-loop supply chain and control the flow between the nodes To profit maximization the system and minimize the carbon footprint of the system.en_US
dc.description.tableofcontents 第一章 緒論 8
第一節 研究背景介紹 8
第二節 研究動機與目的 12
第二章 文獻回顧 14
第一節 共享經濟及共享單車 14
第二節 綠色閉環供應鏈 16
第三節 解決辦法 20
第三章 研究問題介紹 22
第一節 問題概述 22
第二節 模型假設 25
第三節 多目標整數規劃模型 30
一、目標式之一 利潤的最大化 30
二、目標式之二 CO2排放量的最小化 32
三、限制式 33
第四章 模型求解方法 36
第一節 多目標規劃問題的解法 36
第二節 NSGA-II演算法介紹 40
一、演算法簡介 40
二、演算法套用 45
第五章 數值算例及結果分析 48
第一節、模擬測試問題 48
第二節、參數值的設置 52
第三節、計算結果及分析 55
第六章 結論 58
第一節、結論 58
第二節、未來研究方向 59
參考文獻 61
zh_TW
dc.format.extent 1711313 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106356042en_US
dc.subject (關鍵詞) 共享經濟zh_TW
dc.subject (關鍵詞) 共享單車zh_TW
dc.subject (關鍵詞) 綠色閉環供應鏈zh_TW
dc.subject (關鍵詞) 多目標整數規劃模型zh_TW
dc.subject (關鍵詞) 利潤最大化zh_TW
dc.subject (關鍵詞) 碳排放最小化zh_TW
dc.subject (關鍵詞) NSGA-II演算法zh_TW
dc.subject (關鍵詞) Pareto解集zh_TW
dc.subject (關鍵詞) sharing economyen_US
dc.subject (關鍵詞) sharing bicycleen_US
dc.subject (關鍵詞) green closed-loop supply chainen_US
dc.subject (關鍵詞) multi-objective integer programming modelen_US
dc.subject (關鍵詞) profit maximizationen_US
dc.subject (關鍵詞) carbon minimizationen_US
dc.subject (關鍵詞) NSGA-II Algorithmen_US
dc.subject (關鍵詞) Pareto solution seten_US
dc.title (題名) 共享單車企業的綠色閉環供應鏈模型設計zh_TW
dc.title (題名) A Green Closed-loop Supply Chain Model for Sharing Bicycle Enterprisesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. Aras et al.(2008).Locating collection centers for incentive-dependent returns under a pick-up policy with capacitated vehicles,Eur. J. Oper. Res., 191 2008, pp. 1223-1240
2. Abdallah et al.(2012). Green supply chains with carbon trading and environmental sourcing: Formulation and life cycle assessment, Applied Mathematical Modelling, Vol. 36 (9), pp. 4271-4285
3. Bazan et al. 2016) A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective, Applied Mathematical Modelling,Volume 40, Issues 5–6, March 2016, pp. 4151-4178
4. Chemla et al. 2013). Bike sharing systems: Solving the static rebalancing problem, Discrete Optimization,Volume 10, Issue 2, May 2013, pp.120-146
5. Cohen&Welling,(2015). Transformation Properties of Learned Visual Representations, In International Conference on Learning Representations (ICLR), 2015
6. Corne, et al.(2000). The Pareto envelope-based selection algorithm for multiobjective optimization, Proceedings of sixth international conference on parallel problem solving from Nature, 18–20 September, 2000, Springer, Paris, France
7. Deb et al.(2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, Vol. 6 (2), pp. 182-197
8. Deb et al.(2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,Proceedings of sixth international conference on parallel problem solving from nature, 18–20 September, 2000, Springer, Paris, France
9. Diabat et al.(2013).Strategic closed-loop facility location problem with carbon market trading,IEEE Trans. Eng. Manag., 60 (2) (2013), pp. 398-408
10. Fahimnia et al. (2013).The impact of carbon pricing on a closed-loop supply chain: an Australian case study, Journal of Cleaner Prod., 59 (13), pp. 210-225
11. Fleischmann et al.(1997). Quantitative models for reverse logistics: A review, European Journal of Operational Research,Volume 103, Issue 1, 16 November 1997, pp. 1-17
12. Fleischmann et al. (2001). The impact of product recovery on logistics network design,Prod. Oper. Manag., Vol. 10 , pp. 156-173
13. Fonseca&Fleming,(1993).Genetic algorithms for multiobjective optimization: formulation, discussion and generalization, Proceedings of the ICGA-93: fifth international conference on genetic algorithms, 17–22 July 1993, Morgan Kaufmann, Urbana-Champaign, IL, USA
14. Guide&Van(2001). WassenhoveManaging product returns for remanufacturing, Prod. Oper. Manag., Vol. 10 (2), pp. 142-155
15. Goldberg,(1989), Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Longman Publishing Co., Boston, MA, USA
16. Gui et al.(2016). Efficient Implementation of Collective Extended Producer Responsibility Legislation,Manage. Sci., Vol. 62 (4), pp. 1098-1123
17. Govindan et al.(2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future, European Journal of Operational Research,Volume 240, Issue 3, 1 February 2015, pp. 603-626
18. Holland(1975)Adaptation in natural and artificial systems,University of Michigan Press, Ann Arbor Kapetanopoulou , Tagaras , (2010) . Drivers and obstacles of product recovery activities in the Greek industry, Int. J. Oper. Prod. Manag. Vol. 31 (2) 148-166
19. Jayaramana et al.(2003). The design of reverse distribution networks: Models and solution procedures European Journal of Operational ResearchVolume 150, Issue 1, 1 October 2003, Pages 128-149
20. Ko&Evans(2007)A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs,Computers & Operations Research, 34 (2) (2007), pp. 346-366
21. Kadambala et al.,(2017). Closed loop supply chain networks: Designs for energy and time value efficiency, International Journal of Production Economics,Volume 183, Part B, January 2017, pp. 382-393
22. Krikke,(2011). Impact of closed-loop network configurations on carbon footprints: A case study in copiers, Resources, Conservation and Recycling,Volume 55, Issue 12, October 2011,pp. 1196-1205
23. Konak et al.(2006). Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety,Volume 91, Issue 9, September 2006, pp.992-1007
24. Lee,(2009),Dynamic network design for reverse logistics operations under uncertaintyTransp. Res. Part E, 45 (2009), pp. 61-71
25. Min (2006). A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns, Omega Vol.34, pp.56–69
26. Soleimani et al.(2013). Designing and planning a multi-echelon multi-period multi-product closed-loop supply chain utilizing genetic algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 68 (1–4), pp. 917-931
27. Pishvaee et al. (2009),A stochastic optimization model for integrated forward/reverse logistics network design J. Manuf. Syst., 28 (2009), pp. 107-114
28. Pishvaee,&Kianfar(2010),Reverse logistics network design using simulated annealing Int. J. Adv. Manuf. Technol., 47 (2010), pp. 269-281
29. RoHS (2008).Working with EEE producers to ensure RoHS compliance through the European Union, URL http://www.rohs.eu/english/index.html.
30. Rahman&Subramanian,(2012). Factors for implementing end-of-life computer recycling operations in reverse supply chains, Int. J. Prod. Econ., Vol. 140 pp. 239-248
31. Su(2014). Fuzzy multi-objective recoverable remanufacturing planning decisions involving multiple components and multiple machines, Computers & Industrial Engineering, Vol. 72 , pp. 72-83
32. Shi et al.(2017). Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm, Applied Mathematical Modelling,Volume 45, May 2017, pp. 14-30
33. Walther&Spengler, (2005). Impact of WEEE-directive on reverse logistics in Germany, Int. J. Phys. Distrib. Logist. Manag. 35 337–361
34. Özkır&Başlıgil, (2013). Multi-objective optimization of closed-loop supply chains in uncertain environment, Journal of Cleaner Production, Vol. 41, pp. 114-125
35. Zitzler&Thiele,(1999).Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,IEEE Trans Evol Comput, 3 (4) (1999), pp. 257-271
36. Zitzler et al.(2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evol Comput, 8 (2), pp. 173-195
37. Zailini et al.(2012), Sustainable supply chain management (SSCM) in Malaysia: A survey, International Journal of Production Economics,Volume 140, Issue 1, November 2012, pp. 330-340
38. Zhou&Gen(1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem, Eur. J. Oper. Res., Vol. 114, pp. 141-152
39. 李敏蓮,(2017)。共享單車市場調研與分析。財經界,pp.121-123。
40. 劉亞楠,(2017)。共享單車發展研究分析。時代金融,No.03,pp.251-254。
41. 常山,宋瑞,何世偉,黎浩東,(2018)。共享單車故障車輛回收模型。吉林大學學報,Vol.48,No.6 pp.1677-1683。
42. 郭鹏,林祥枝,黄艺,涂思明,白晓明,杨雅雯,叶林,(2017)。共享单车:互联网技术与公共服务中的协同治理。公共管理學報,No.3 ,pp.1-10。
43. 湯天波,吳曉隽,(2015)。共享经济:“互联网+”下的颠覆性经济模式。科學發展,No.12,pp.78-85。
44. 胡靜靜,(2018)。共享經濟:國內外文獻綜述與研究展望。改革與戰略No.34,pp.134-138。
45. 中國信通院,2017年共享單車經濟社會影響報告,上網日期2018年2月6日,檢自:http://www.caict.ac.cn/sytj/201802/t20180206_172836.htm
46. 李成東,摩拜1000,哈罗800,ofo的车500块到底有什么差别?,上網日期2018年4月17日,檢自:https://zhuanlan.zhihu.com/p/35768121
47. 企鵝智酷調查,2016年12月,檢自https://tech.qq.com/a/20170228/019218.htm
zh_TW
dc.identifier.doi (DOI) 10.6814/NCCU201901020en_US