學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 穿戴六軸感測裝置之展演者的即時步伐方向追蹤定位
Real Time Performer Positioning with Step and Direction Tracking using Wearable IMU Devices作者 曾珧彰
Tseng, Yao-Chang貢獻者 蔡子傑
Tsai, Tzu-Chieh
曾珧彰
Tseng, Yao-Chang關鍵詞 虛擬實境
穿戴式裝置
互動科技
互動展演
定位技術
慣性感測單元
即時追蹤
VR
Wearable Device
Interactive technology
Interactive performing
Positioning Technique
IMU
Real-time tracking日期 2019 上傳時間 5-九月-2019 16:14:26 (UTC+8) 摘要 近年來,利用穿戴式裝置結合虛擬實境或互動科技,來進行即興創作表演,是種新型態的數位藝術展演方式。之前的研究成果已有整合的平台,可以將表演展的姿態利用穿戴式裝置擷取,呈現在表演的虛擬物件,進行互動展演。但還欠缺表演展的位置的即時追蹤,才能更完整地讓展演順暢自然。之前相關的定位技術研究,大多只探討誤差範圍,無法即時準確地追蹤,在表演的應用上無法直接運用。本研究希望是利用穿戴式裝置上的IMU六軸感測器資料,就能達成此目標。我們參考過往方法,經過不斷實驗驗證,提出以步伐和方向的判斷演算法,整合出解決表演中即時追蹤的問題。實驗結果確認了我們的方法可以有很好的成效,希望這一套平台,可以讓固有的展演型態創造新的樣態,展現台灣軟硬結合的文化創意實力。
Recently, improvisational performance using wearable devices combined with virtual reality (VR) or interactive technology has become a new type of digital art performing. Our previous research results have developed a platform that can “capture” the body gesture using wearable devices to render appearance of virtual objects for art performance. However, it still need the real-time position tracking of the performer to make the performance smoothly and naturally.Previous related works regarding the positioning techniques mostly focused on the error distances. They cannot be directly adopted in the practical performing art due to unsatisfactory real-time position tracking. The goal of the research is to achieve acceptable tracking performance using only IMU wearable sensors. We inspired from many methods by lots of experiments, a real-time positioning with “foot-step” and “direction-judge” tracking algorithm is proposed to solve this problem. The experiment results are satisfactory with very good feasibility. We hope the platform can enrich the performing patterns in digital arts, and empower the cultural innovation and integration capability of software and hardware industry in Taiwan.參考文獻 [1] Wiki, "IOT技術," Wiki, [Online]. Available:https://zh.wikipedia.org/wiki/%E7%89%A9%E8%81%94%E7%BD%91.[2] Chun-Han Lin ,Lyu-Han Chen Chun-Han Lin , Lyu-Han Chen , Cheng-Fu Chou , Jose Luis Garcia Gomez, "An Indoor Positioning Algorithm Based on Fingerprint and Mobility Prediction in RSS Fluctuation-Prone WLANs," IEEE, 2019.[3] "全球定位系統," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E5%85%A8%E7%90%83%E5%AE%9A%E4%BD%8D%E7%B3%BB%E7%BB%9F.[4] "Wi-Fi," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/Wi-Fi.[5] "智慧博物館," [Online]. Available:http://moeimo2016.blogspot.com/2017/07/blog-post_40.html.[6] "RSSI," wiki, [Online]. Available: https://en.wikipedia.org/wiki/Received_signal_strength_indication.[7] Chen-Yi Lee , Tzu-Chieh Tsai ,, ""A Real-time Interactive Wearable Platform for Skeleton Detection of Multi-Regional Users and Immersive Experiences."," NCCU CS, 10 2016.[8] "Mqtt," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/MQTT.[9] "TCP/IP," [Online]. Available: https://zh.wikipedia.org/wiki/TCP/IP%E5%8D%8F%E8%AE%AE%E6%97%8F.[10] "慣性導航系統," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%AF%BC%E8%88%AA%E7%B3%BB%E7%BB%9F.[11] Lyu-Han Chen ; Gen-Huey Chen ; Ming-Hui Jin ; Eric Hsiao-Kuang , "A Novel RSS-Based Indoor Positioning Algorithm Using Mobility Predictionv," IEEE, 2010.[12] S. e. a. Bertuletti, ""Indoor distance estimated from Bluetooth Low Energy signal strength: comparison of regression models."," 2016 IEEE Sensors Applications Symposium (SAS)., 2016.[13] Xingli Gan ,BaoGuo Yu , Yaning Li, "Deep Learning for Weights Training and Indoor Position Using Multi-sensor Fingerpint," IPIN-2017, 2017.[14] Md. Shareef Ifthekhar , Nirzhar Saha , Yeong Min Jang, "Neural network based indoor positioning technique in optical camera communication system," IEEE, 2014.[15] chadeltu, "RSSI 距離," CSDN, [Online]. Available: https://blog.csdn.net/chadeltu/article/details/44059431.[16] "快速傅立葉變換," wiki, [Online]. Available: https://zh.wikipedia.org/zh-tw/%E5%BF%AB%E9%80%9F%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2.[17] "移動平均法," MBA智庫百科, [Online]. Available: https://wiki.mbalib.com/zh-tw/%E7%A7%BB%E5%8A%A8%E5%B9%B3%E5%9D%87%E6%B3%95.[18] "互補濾波器," Rapot, [Online]. Available: http://rapot2014.blogspot.com/2014/08/inverted-pendulum3.html.[19] David M. Bourg , Bryan Bywalec, Physics for Game Developers , Second Edition, gotop, 2015.[20] Yu-Chuan Tsai,Tzu-Chieh Tsai, "Real-time Relative Directional Positioning Using Wearable Devices)," 11 2016.[21] N. Zhao, ""Full-futured Pedometer Design Realized with 3-Axis Digital Accelerometer."," Analog Dialogue, 6 2010.[22] Sang Kyeong Park and Young Soo Suh ., ""A Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation Systems."," Sensors 2010, 10, 9163-9178, 2010.[23] 于飞,白红美, 高伟,赵博,叶攀., ""步幅和建筑方向辅助的行人导航算法."," Journal of Harbin Engineering University , 3 2016.[24] Greg Welch , Gary Bishop ,, ""An Introduction to the Kalman Filter."," "University of North Carolina at Chapel Hill.", 24 7 2006.[25] "Rapot Arduino," 2014. [Online]. Available: http://rapot2014.blogspot.com/2014/08/inverted-pendulum3.html.[26] G. A. Developer, "https://developer.android.com/reference/android/hardware/SensorEvent.html#values," [Online]. Available: https://developer.android.com/reference/android/hardware/SensorEvent.html#values.[27] "IMU," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E6%B5%8B%E9%87%8F%E5%8D%95%E5%85%83.[28] "Raspberry Pi," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%A0%91%E8%8E%93%E6%B4%BE.[29] J. C. Aguilar Herrera , P. G. Plöger , A. Hinkenjann , J. Maiero , M. Flores , A. Ramos, "Pedestrian indoor positioning using smartphone multi-sensing, radio beacons, user positions probability map and IndoorOSM floor plan representation," IEEE, 2014. 描述 碩士
國立政治大學
資訊科學系
105753020資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105753020 資料類型 thesis dc.contributor.advisor 蔡子傑 zh_TW dc.contributor.advisor Tsai, Tzu-Chieh en_US dc.contributor.author (作者) 曾珧彰 zh_TW dc.contributor.author (作者) Tseng, Yao-Chang en_US dc.creator (作者) 曾珧彰 zh_TW dc.creator (作者) Tseng, Yao-Chang en_US dc.date (日期) 2019 en_US dc.date.accessioned 5-九月-2019 16:14:26 (UTC+8) - dc.date.available 5-九月-2019 16:14:26 (UTC+8) - dc.date.issued (上傳時間) 5-九月-2019 16:14:26 (UTC+8) - dc.identifier (其他 識別碼) G0105753020 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125640 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學系 zh_TW dc.description (描述) 105753020 zh_TW dc.description.abstract (摘要) 近年來,利用穿戴式裝置結合虛擬實境或互動科技,來進行即興創作表演,是種新型態的數位藝術展演方式。之前的研究成果已有整合的平台,可以將表演展的姿態利用穿戴式裝置擷取,呈現在表演的虛擬物件,進行互動展演。但還欠缺表演展的位置的即時追蹤,才能更完整地讓展演順暢自然。之前相關的定位技術研究,大多只探討誤差範圍,無法即時準確地追蹤,在表演的應用上無法直接運用。本研究希望是利用穿戴式裝置上的IMU六軸感測器資料,就能達成此目標。我們參考過往方法,經過不斷實驗驗證,提出以步伐和方向的判斷演算法,整合出解決表演中即時追蹤的問題。實驗結果確認了我們的方法可以有很好的成效,希望這一套平台,可以讓固有的展演型態創造新的樣態,展現台灣軟硬結合的文化創意實力。 zh_TW dc.description.abstract (摘要) Recently, improvisational performance using wearable devices combined with virtual reality (VR) or interactive technology has become a new type of digital art performing. Our previous research results have developed a platform that can “capture” the body gesture using wearable devices to render appearance of virtual objects for art performance. However, it still need the real-time position tracking of the performer to make the performance smoothly and naturally.Previous related works regarding the positioning techniques mostly focused on the error distances. They cannot be directly adopted in the practical performing art due to unsatisfactory real-time position tracking. The goal of the research is to achieve acceptable tracking performance using only IMU wearable sensors. We inspired from many methods by lots of experiments, a real-time positioning with “foot-step” and “direction-judge” tracking algorithm is proposed to solve this problem. The experiment results are satisfactory with very good feasibility. We hope the platform can enrich the performing patterns in digital arts, and empower the cultural innovation and integration capability of software and hardware industry in Taiwan. en_US dc.description.tableofcontents Chapter 1 Introduction 11.1 Foreword 11.2 Motivation 11.3 Research Target 3Chapter 2 Hardware System and Platform 52.1 Hardware Device 52.1.1 Raspberry Pi 52.1.2 NCCU CS Sensor 72.2 The Communication Protocol 82.2.1 MQTT Protocol 82.3 Related Performance 92.3.1 National Shanghai Music Festival 92.3.2 Tamsui Music Festival 122.3.3 High School Promotion 14Chapter 3 Background 163.1 The inertial positioning system [10] [11] 163.2 Navigation application in flying area 173.3 Foot step detection system 183.4 Position system by using machine learning [13] [14] 183.5 RSSI 193.6 Conclusion 19Chapter 4 Related Research 214.1 Related filter algorithm or method 214.1.1 Fast Fourier Transform 214.1.2 Moving Filter 224.1.3 Complementary Filter 244.1.4 Gravity Remove 254.2 Related Research paper 264.2.1 Method 1 264.2.2 Method 2 274.3 Conclusion 29Chapter 5 Paper Method 305.1 Method 1 305.2 Method 2 335.2 Method 2 Conclusion 365.3 Method 3 37Chapter 6 Experiment 416.1 Foot step system’s experiment 416.2 Most active axis experiment 436.3 Fast Fourier Transform 446.4 Data experiment 476.5 Forward experiment 486.5 Method Compared 506.6 Conclusion 50Chapter 7 Future Work and Result 517.1 Future Work 51Reference 52 zh_TW dc.format.extent 4034851 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105753020 en_US dc.subject (關鍵詞) 虛擬實境 zh_TW dc.subject (關鍵詞) 穿戴式裝置 zh_TW dc.subject (關鍵詞) 互動科技 zh_TW dc.subject (關鍵詞) 互動展演 zh_TW dc.subject (關鍵詞) 定位技術 zh_TW dc.subject (關鍵詞) 慣性感測單元 zh_TW dc.subject (關鍵詞) 即時追蹤 zh_TW dc.subject (關鍵詞) VR en_US dc.subject (關鍵詞) Wearable Device en_US dc.subject (關鍵詞) Interactive technology en_US dc.subject (關鍵詞) Interactive performing en_US dc.subject (關鍵詞) Positioning Technique en_US dc.subject (關鍵詞) IMU en_US dc.subject (關鍵詞) Real-time tracking en_US dc.title (題名) 穿戴六軸感測裝置之展演者的即時步伐方向追蹤定位 zh_TW dc.title (題名) Real Time Performer Positioning with Step and Direction Tracking using Wearable IMU Devices en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] Wiki, "IOT技術," Wiki, [Online]. Available:https://zh.wikipedia.org/wiki/%E7%89%A9%E8%81%94%E7%BD%91.[2] Chun-Han Lin ,Lyu-Han Chen Chun-Han Lin , Lyu-Han Chen , Cheng-Fu Chou , Jose Luis Garcia Gomez, "An Indoor Positioning Algorithm Based on Fingerprint and Mobility Prediction in RSS Fluctuation-Prone WLANs," IEEE, 2019.[3] "全球定位系統," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E5%85%A8%E7%90%83%E5%AE%9A%E4%BD%8D%E7%B3%BB%E7%BB%9F.[4] "Wi-Fi," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/Wi-Fi.[5] "智慧博物館," [Online]. Available:http://moeimo2016.blogspot.com/2017/07/blog-post_40.html.[6] "RSSI," wiki, [Online]. Available: https://en.wikipedia.org/wiki/Received_signal_strength_indication.[7] Chen-Yi Lee , Tzu-Chieh Tsai ,, ""A Real-time Interactive Wearable Platform for Skeleton Detection of Multi-Regional Users and Immersive Experiences."," NCCU CS, 10 2016.[8] "Mqtt," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/MQTT.[9] "TCP/IP," [Online]. Available: https://zh.wikipedia.org/wiki/TCP/IP%E5%8D%8F%E8%AE%AE%E6%97%8F.[10] "慣性導航系統," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%AF%BC%E8%88%AA%E7%B3%BB%E7%BB%9F.[11] Lyu-Han Chen ; Gen-Huey Chen ; Ming-Hui Jin ; Eric Hsiao-Kuang , "A Novel RSS-Based Indoor Positioning Algorithm Using Mobility Predictionv," IEEE, 2010.[12] S. e. a. Bertuletti, ""Indoor distance estimated from Bluetooth Low Energy signal strength: comparison of regression models."," 2016 IEEE Sensors Applications Symposium (SAS)., 2016.[13] Xingli Gan ,BaoGuo Yu , Yaning Li, "Deep Learning for Weights Training and Indoor Position Using Multi-sensor Fingerpint," IPIN-2017, 2017.[14] Md. Shareef Ifthekhar , Nirzhar Saha , Yeong Min Jang, "Neural network based indoor positioning technique in optical camera communication system," IEEE, 2014.[15] chadeltu, "RSSI 距離," CSDN, [Online]. Available: https://blog.csdn.net/chadeltu/article/details/44059431.[16] "快速傅立葉變換," wiki, [Online]. Available: https://zh.wikipedia.org/zh-tw/%E5%BF%AB%E9%80%9F%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2.[17] "移動平均法," MBA智庫百科, [Online]. Available: https://wiki.mbalib.com/zh-tw/%E7%A7%BB%E5%8A%A8%E5%B9%B3%E5%9D%87%E6%B3%95.[18] "互補濾波器," Rapot, [Online]. Available: http://rapot2014.blogspot.com/2014/08/inverted-pendulum3.html.[19] David M. Bourg , Bryan Bywalec, Physics for Game Developers , Second Edition, gotop, 2015.[20] Yu-Chuan Tsai,Tzu-Chieh Tsai, "Real-time Relative Directional Positioning Using Wearable Devices)," 11 2016.[21] N. Zhao, ""Full-futured Pedometer Design Realized with 3-Axis Digital Accelerometer."," Analog Dialogue, 6 2010.[22] Sang Kyeong Park and Young Soo Suh ., ""A Zero Velocity Detection Algorithm Using Inertial Sensors for Pedestrian Navigation Systems."," Sensors 2010, 10, 9163-9178, 2010.[23] 于飞,白红美, 高伟,赵博,叶攀., ""步幅和建筑方向辅助的行人导航算法."," Journal of Harbin Engineering University , 3 2016.[24] Greg Welch , Gary Bishop ,, ""An Introduction to the Kalman Filter."," "University of North Carolina at Chapel Hill.", 24 7 2006.[25] "Rapot Arduino," 2014. [Online]. Available: http://rapot2014.blogspot.com/2014/08/inverted-pendulum3.html.[26] G. A. Developer, "https://developer.android.com/reference/android/hardware/SensorEvent.html#values," [Online]. Available: https://developer.android.com/reference/android/hardware/SensorEvent.html#values.[27] "IMU," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E6%B5%8B%E9%87%8F%E5%8D%95%E5%85%83.[28] "Raspberry Pi," wiki, [Online]. Available: https://zh.wikipedia.org/wiki/%E6%A0%91%E8%8E%93%E6%B4%BE.[29] J. C. Aguilar Herrera , P. G. Plöger , A. Hinkenjann , J. Maiero , M. Flores , A. Ramos, "Pedestrian indoor positioning using smartphone multi-sensing, radio beacons, user positions probability map and IndoorOSM floor plan representation," IEEE, 2014. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU201900679 en_US