學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 關於量子蒙地卡羅退火法
On quantum Monte Carlo annealing作者 何政緯
Ho, Zheng-Wei貢獻者 林瑜琤
Lin, Yu-Cheng
何政緯
Ho, Zheng-Wei關鍵詞 模擬退火
隨機級數展開量子蒙地卡羅演算法
零溫投射蒙地卡羅演算法
非均質量子易辛鏈
三角反鐵磁
Kosterlitz-Thouless 相變
simulated annealing
stochastic series expansion method
zero-temperature projector method
random quantum Ising chain
triangular Ising antiferromagnet
Kosterlitz-Thouless transition日期 2019 上傳時間 5-九月-2019 16:15:50 (UTC+8) 摘要 本論文檢驗以蒙地卡羅模擬退火來探討平衡態相變點定標分析之可能性。以量子易辛模型為例,我們分別探討動力學指數為 z = 1 的量子臨界點,具 z = ∞ 的無序量子臨界點,及 Kosterlitz-Thouless (KT) 相變。應用有限溫度隨機級數展開法及基態投射演算法,我們考慮的退火路徑涵蓋降溫、降橫場(量子擾動項)及同時降溫及降場三種情形。我們的計算結果顯示對於 z = 1 量子臨界點,上述後兩類量子退火過程在緩慢改變參數下均能正確反應臨界點位置及臨界指數。通過 KT 相變的退火過程亦可找出吻合理論的定標行為。唯 z = ∞ 的量子臨界點為退火過程的瓶頸,似乎任意緩慢的退火速率均很難突破這個瓶頸來達到無序系統近似靜態的極限。
This thesis examines the use of quantum Monte Carlo simulated annealing in the study of finite-size scaling for equilibrium phase transitions. For quantum Ising models, we study quantum critical points with the dynamic exponent z = 1, a disordered quantum critical point with z = ∞, and the Kosterlitz-Thouless (KT) transition approached through various annealing protocols in quantum Monte Carlo simulations using the stochastic series expansion method and a zero-temperature projector method. We demonstrate that annealing by decreasing a transverse field at zero temperature, or by decreasing the temperature and the transverse field simultaneously can correctly capture the critical scaling behaviors at z = 1 quantum critical points and the KT transition, if the rate of change is sufficiently slow. However, the z = ∞ quantum critical point is an annealing bottleneck and our approaches fail to reach the quasi-static limit of the random quantum Ising chain.參考文獻 [1] S. Sachdev, Quantum Phase Transitions, Cambridge University Press., 2000.[2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).[3] G. H. Wannier, Phys. Rev. 79, 357 (1950).[4] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409 (2003).[5] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 29, 5250 (1984).[6] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).[7] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).[8] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).[9] V. Privman, Finite-size scaling theoy, volume 1, Singapore: World Scientific, 1990.[10] J. Cardy, Scaling and Renormalization in Statistical Physics, volume 5, Cambridge University Press, 1996.[11] K. Binder, Phys. Rev. Lett. 47, 693 (1981).[12] K. Binder, Zeitschrift für Physik B Condensed Matter (1981).[13] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).[14] J. M. Kosterlitz, Journal of Physics C: Solid State Physics (1974).[15] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 63, 214503 (2001).[16] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).[17] S. Guo et al., Phys. Rev. Lett. 100, 017209 (2008).[18] S. Ubaid-Kassis, T. Vojta, and A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010).[19] Y. Xing et al., Science 350, 542 (2015).[20] T. Vojta, J. Phys. A 39, R143 (2006).[21] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).[22] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).[23] C. Pich, A. P. Young, H. Rieger, and N. Kawashima, Phys. Rev. Lett. 81, 5916 (1998).[24] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).[25] D. C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962).[26] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).[27] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).[28] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–206, Springer, Berlin, Heidelberg, 2013.[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).[30] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).[31] A. W. Sandvik and K. S. Beach, arXiv:0704.1469v1 (2007).[32] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).[33] L. P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967).[34] M. E. Fisher, Phys. Rev. 180, 594 (1969).[35] H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).[36] R. Guida and J. Zinn-Justin, Nuclear Physics B ,Volume 489, Issue 3, Pages 626-652 (1997).[37] S. Kirkpatrick, M. P. Vecchi, and C. D. Gelatt Jr., science 220, 671 (1983).[38] T. W. Kibble, Physics Report 67, 183 (1980).[39] W. Zurek, Nature 317, 505 (1985).[40] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).[41] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).[42] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys. Rev. B 89, 054307 (2014).[43] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學, 2017. 描述 碩士
國立政治大學
應用物理研究所
106755006資料來源 http://thesis.lib.nccu.edu.tw/record/#G1067550061 資料類型 thesis dc.contributor.advisor 林瑜琤 zh_TW dc.contributor.advisor Lin, Yu-Cheng en_US dc.contributor.author (作者) 何政緯 zh_TW dc.contributor.author (作者) Ho, Zheng-Wei en_US dc.creator (作者) 何政緯 zh_TW dc.creator (作者) Ho, Zheng-Wei en_US dc.date (日期) 2019 en_US dc.date.accessioned 5-九月-2019 16:15:50 (UTC+8) - dc.date.available 5-九月-2019 16:15:50 (UTC+8) - dc.date.issued (上傳時間) 5-九月-2019 16:15:50 (UTC+8) - dc.identifier (其他 識別碼) G1067550061 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125647 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 應用物理研究所 zh_TW dc.description (描述) 106755006 zh_TW dc.description.abstract (摘要) 本論文檢驗以蒙地卡羅模擬退火來探討平衡態相變點定標分析之可能性。以量子易辛模型為例,我們分別探討動力學指數為 z = 1 的量子臨界點,具 z = ∞ 的無序量子臨界點,及 Kosterlitz-Thouless (KT) 相變。應用有限溫度隨機級數展開法及基態投射演算法,我們考慮的退火路徑涵蓋降溫、降橫場(量子擾動項)及同時降溫及降場三種情形。我們的計算結果顯示對於 z = 1 量子臨界點,上述後兩類量子退火過程在緩慢改變參數下均能正確反應臨界點位置及臨界指數。通過 KT 相變的退火過程亦可找出吻合理論的定標行為。唯 z = ∞ 的量子臨界點為退火過程的瓶頸,似乎任意緩慢的退火速率均很難突破這個瓶頸來達到無序系統近似靜態的極限。 zh_TW dc.description.abstract (摘要) This thesis examines the use of quantum Monte Carlo simulated annealing in the study of finite-size scaling for equilibrium phase transitions. For quantum Ising models, we study quantum critical points with the dynamic exponent z = 1, a disordered quantum critical point with z = ∞, and the Kosterlitz-Thouless (KT) transition approached through various annealing protocols in quantum Monte Carlo simulations using the stochastic series expansion method and a zero-temperature projector method. We demonstrate that annealing by decreasing a transverse field at zero temperature, or by decreasing the temperature and the transverse field simultaneously can correctly capture the critical scaling behaviors at z = 1 quantum critical points and the KT transition, if the rate of change is sufficiently slow. However, the z = ∞ quantum critical point is an annealing bottleneck and our approaches fail to reach the quasi-static limit of the random quantum Ising chain. en_US dc.description.tableofcontents 致謝 i摘要 iiiAbstract vContents vii1 模型概述 11.1 量子相變 11.2 量子易辛模型 21.3 有限尺度定標 41.4 無序效應 72 隨機級數展開量子蒙地卡羅方法 112.1 隨機級數展開法之推導 112.1.1 局域更新 152.1.2 叢集更新 192.2 無序系統的SSE方法 202.3 零溫投射量子蒙地卡羅方法 222.3.1 基態投射法 233 模擬結果 273.1 自旋鐵磁鏈及方晶格鐵磁 273.1.1 平衡態模擬 273.1.2 模擬退火與Kibble-Zurek機制 303.1.3 模擬退火 343.1.4 零溫模擬退火 463.2 三角反鐵磁 473.3 無序自旋鏈 523.3.1 有限溫度模擬退火 523.3.2 零溫模擬退火 574 結論 61參考文獻 63 zh_TW dc.format.extent 10790799 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1067550061 en_US dc.subject (關鍵詞) 模擬退火 zh_TW dc.subject (關鍵詞) 隨機級數展開量子蒙地卡羅演算法 zh_TW dc.subject (關鍵詞) 零溫投射蒙地卡羅演算法 zh_TW dc.subject (關鍵詞) 非均質量子易辛鏈 zh_TW dc.subject (關鍵詞) 三角反鐵磁 zh_TW dc.subject (關鍵詞) Kosterlitz-Thouless 相變 zh_TW dc.subject (關鍵詞) simulated annealing en_US dc.subject (關鍵詞) stochastic series expansion method en_US dc.subject (關鍵詞) zero-temperature projector method en_US dc.subject (關鍵詞) random quantum Ising chain en_US dc.subject (關鍵詞) triangular Ising antiferromagnet en_US dc.subject (關鍵詞) Kosterlitz-Thouless transition en_US dc.title (題名) 關於量子蒙地卡羅退火法 zh_TW dc.title (題名) On quantum Monte Carlo annealing en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] S. Sachdev, Quantum Phase Transitions, Cambridge University Press., 2000.[2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).[3] G. H. Wannier, Phys. Rev. 79, 357 (1950).[4] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409 (2003).[5] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 29, 5250 (1984).[6] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).[7] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).[8] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).[9] V. Privman, Finite-size scaling theoy, volume 1, Singapore: World Scientific, 1990.[10] J. Cardy, Scaling and Renormalization in Statistical Physics, volume 5, Cambridge University Press, 1996.[11] K. Binder, Phys. Rev. Lett. 47, 693 (1981).[12] K. Binder, Zeitschrift für Physik B Condensed Matter (1981).[13] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).[14] J. M. Kosterlitz, Journal of Physics C: Solid State Physics (1974).[15] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 63, 214503 (2001).[16] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).[17] S. Guo et al., Phys. Rev. Lett. 100, 017209 (2008).[18] S. Ubaid-Kassis, T. Vojta, and A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010).[19] Y. Xing et al., Science 350, 542 (2015).[20] T. Vojta, J. Phys. A 39, R143 (2006).[21] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).[22] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).[23] C. Pich, A. P. Young, H. Rieger, and N. Kawashima, Phys. Rev. Lett. 81, 5916 (1998).[24] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).[25] D. C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962).[26] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).[27] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).[28] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–206, Springer, Berlin, Heidelberg, 2013.[29] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).[30] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).[31] A. W. Sandvik and K. S. Beach, arXiv:0704.1469v1 (2007).[32] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).[33] L. P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967).[34] M. E. Fisher, Phys. Rev. 180, 594 (1969).[35] H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).[36] R. Guida and J. Zinn-Justin, Nuclear Physics B ,Volume 489, Issue 3, Pages 626-652 (1997).[37] S. Kirkpatrick, M. P. Vecchi, and C. D. Gelatt Jr., science 220, 671 (1983).[38] T. W. Kibble, Physics Report 67, 183 (1980).[39] W. Zurek, Nature 317, 505 (1985).[40] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).[41] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).[42] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys. Rev. B 89, 054307 (2014).[43] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學, 2017. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU201901066 en_US