學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 想法中心的知識翻新活動對職前教師知識整合與設計能力影響
Effects of Idea-centered Knowledge Building activities on Preservice Teachers’ Knowledge Integration and Design Ability作者 薛智暉
Seet, Chih Hui貢獻者 洪煌堯
Hong, Huang-Yao
薛智暉
Seet, Chih Hui關鍵詞 想法中心知識翻新
科技整合設計知能
教師設計信念
線上課程
設計能力
Idea-centered knowledge building
Technology-integrated design knowledge(TIDK)
Design belief of teacher (DBT)
Online course
Design ability日期 2019 上傳時間 5-九月-2019 17:16:53 (UTC+8) 摘要 隨著科技的急速進步,學習媒介不斷推陳出新,比起過往重視教學內容統一的教育,如今的教育更強調如何設計課程內容來讓孩子進行自主學習。故教師應與時俱進掌握相關科技應用技能、提昇自我對教學資源再設計的能力,以改變與創新適合學生學習的教學方式。本研究旨在瞭解及檢測一個以想法為中心的知識翻新活動對提升職前教師在數位資源教材設計能力上的影響。本研究以個案方式進行。對象為38名選修『教學媒體與應用』課程的職前教師。主要的學習任務為設計一線上課程。整體活動進行皆在一知識翻新環境上,並以知識翻新原則做引導。課前及課後分別讓受試者填寫『設計導向教師專業整合知能』問卷,並參考設計思考的步驟於課間進行兩輪的想法發展活動。每輪活動結束前,小組間相互體驗、測試他組所設計的線上課程作品,以便給予設計者回饋或修改的建議。課程活動設計的部分,主要是將學生隨機分為十個小組。之後,各組可以自由選定授課主題,但必須要以協助偏鄉師資不足孩童自主學習為目標,設計內容應至少具備三週約150分鐘的課程時間,且應做到能讓學生將所學習到的內容運用在現實生活中,最後要在學期結束時展示教案及網頁介面的設計成果。在資料收集方面以質量混合方式進行,包含學生在知識論壇(KF6)平台中的教案內容、想法討論貼文、回饋與建議、線上課程網頁介面、設計行為的錄影、小組半結構訪談、及問卷等。質化資料以NVivo軟體的輔助,採開放編碼的概念進行分析,量化部分則利用SPSS、行為序列分檢定、及KBDeX等進行處理。研究結果顯示,職前教師的想法及設計行為經過想法中心的知識翻新活動後,有明顯地從發散雜亂的樣式變得更聚焦收斂,整體上多數組別皆能設計出有創意而又與現實生活鏈接的線上課程,職前教師不僅強化了自身的科技整合設計實務技能, 在教師專業知識及設計信念上亦有著統計上顯著的提升。
Due to the rapid advancement of learning technologies, today`s education was able to help students develop more extensive, integrated, and cross-disciplinary knowledge or skills. The easy access to all kinds of learning technologies also results in an increasing interest among teachers to customarily design suitable curriculum content to help children learn in a more independent manner. Nevertheless, how to help future teachers to strengthen their teaching profession and design skills remains to be explored. As such, this case study aims to examine the impact of an idea-centered, technology-enhanced knowledge building activities on promoting pre-service teachers’ design skills.Thirty-eight pre-service teachers who took a course entitled “Educational Media and Application” participated in this study. The main course requirement was that students need to design an online learning course for students from a school located in a remote rural area. The overall activities were carried out in an online environment under the guidance of knowledge-building principles that encourage participants to continuously improve their design ideas. Before (and also after) the class, a questionnaire was employed. Then, participants went through two cycles of design thinking activities that highlight sustained idea generation and development. At the end of each design-thinking cycle, each group was invited to try and test the online courses designed by other groups and then give feedback and suggestions to help one another improve the design of all groups’ online courses.Pedagogically, this study first randomly divided students into ten groups. Then, each group needed to decide a topic of their interest for their online course. An important goal for the participating groups to design online courses is to help their potential students from remote rural areas to engage in self-directed learning so as to help address a recurring problem of insufficient teacher supply there. The online course each group designed needs to at least contain three-week class learning time (approximately 150 minutes) so as to give students plenty opportunities to use the learnt knowledge or skills in addressing some authentic problems related to their daily life. The participating groups were also required to present their final projects (including their lesson plans and the interface of their online courses in a web form) at the end of the semester.In terms of data collection, both quantitative and qualitative data were collected by using a mixed-method approach. Data collected included the learning content designed by pre-service teachers, their online discussion posts, peer feedback and suggestions provided, the online interface of the designed courses, video-recorded design behaviours, semi-structured interviews for all groups, and pre-and-post surveys. The qualitative data were analysed by using the NVivo software, with the help of an open coding procedure, and the quantitative data were processed through the SPSS software, with the help of behaviour sequence analysis tool.The result showed that the pre-service teachers were able to improve their design capacity and their ideas and design behaviours gradually became more focused on the quality of the online course as the semester proceeds. Moreover, the results from the surveys also showed that most of the online course content designed by these pre-service teachers were creative and useful. It was also found that the participants have not only improved their design proficiency but also significantly changed their design belief and knowledge.參考文獻 中文部分台大創新設計學院 (2016) 。設計思考課程及工作坊分享。取自https://medium.com/@debbyyungjenhsu呂紹弘(2017)。從十二年國教及師資培育政策 探討教師核心能力及教師評鑑制度。校務經營個案研究實務研討會成果集合,45-72。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/42/pta_15405_2304613_37818.pdf吳岳剛 (2012)。廣告創意: 理論與實務的對話。 國立政治大學。吳斯茜(2016)。 數位與實體情境模擬的訓練設計。國家文官學院T&D 飛訊,220,1-16。林偉文 (2011) 。 創意教學與創造力的培育-以設計思考為例。教育資料與研究雙月刊,100, 53-57。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/25/pta_5937_8657655_86269.pdf范信賢(2016) 。 核心素養與十二年國民基本教育課程綱要: 導讀《 國民核心素養: 十二年國教課程改革的 DNA》。 教育脈動, (5) , 1-7。洪立萍(2018)。2018 十大創新科技趨勢及對產業的衝擊。國家實驗研究院科技政策研究與資訊中心科技發展觀測平台。取自file:///Users/HSet/Downloads/2018%E5%8D%81%E5%A4%A7%E5%89%B5%E6%96%B0%E7%A7%91%E6%8A%80%E8%B6%A8%E5%8B%A2_20181106V.3.pdf陳聖智 (2012a)。 從設計思考到設計再思: 學術知識與實務經驗的對話。 廣告學研究,37,105-110。陳聖智(2012b)。基於科學知識與工程技術之互動科技設計知能、想像力與學習成效評測。國科會研究計畫(102-2511-S-004-003)。臺北市:科技部。陳俊宏(2014)。專題導向教學平台設計與學習成效之研究(未出版之碩士論文)。 國立臺中教育大學數位內容科技學系, 臺中市。陳國泰(2018)。提升中小學教師的 TPACK 之有效策略。臺灣教育評論月刊,2018, 7(1), 227-235 。取自http://wportfolio.wzu.edu.tw/ezfiles/0/1000/academic/ 92/academic_78662_24973_04945.pdf陳國生(2017)。十二年國教下校本教師專業成長模式之探討: 以專業學習社群作為教師專業成長協作平台。106 校務經營個案研究實務研討會成果集。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/42/pta_15404_4650030_37818.pdf侯世光,張玉山(2005)。「創意設計與製作」活動設計的基礎。教育部教育雲教育大市集。取自https://market.cloud.edu.tw/黃毅英(2008)。從「華人學習者現象」 到「香港學習者現象」。教育研究與發展期刊, 4(2)。黃旭鈞(2013)。 促進「沒有教師落後」:協助不適任教師成長的策略。臺灣教育評論月刊,2(12), 86-92。教育部(2016)。2020 資訊教育總藍圖。臺北市: 教育部。取自 http://ws. moe. edu. tw/001. Upload/3/relfile/6315/46563/65ebb64a-683c-4f7a-bcf0-325113ddb436. pdf.教育部資訊及科技教育司(2016)。 新一代數位學習計畫。取自https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=97F7B762D213051F教育部國民及學前教育署(2017)。十二年國民基本教育實施計畫。取自http://12basic.edu.tw/content.php?ParentNo=8&LevelNo=8國立交通大學 (2017)。科技不斷加速的時代還如何談百年樹人。數理人文期刊,12。台灣: 國立交通大學丘成桐中心,取自https://ir.nctu.edu.tw/bitstream/11536/137375/1/yaucenter-170702.pdf張德齡(2016)。 教室應該不一樣主題式教學。 取自https://gfamily.cwgv.com.tw/content/index/3922董豔,桑國元,蔡敬新(2014)。師範生TPACK 知識的實證研究。教師教育研究, 26(3)。楊家睿 (2017)。探討線上知識翻新之探究活動與科學家意象之關係:以個案研究為例(未出版之碩士論文)。國立政治大學,臺北市。親子天下 (2017)。設計思考從教育開始的破框思維。台北市:天下雜誌。蔡敬新,陳誠志,鄧峰 (2011)。新加坡職前教師培訓課程的設計與評價。化學教育,2011(8)。蔡銘修,陳振元 (2014)。情境模擬於數位學習之重要性: 著重學生該做什麼。2014年大學遠距教學認證成果發表暨學術研討會論文集。取自https://ace.moe.edu.tw/events_file/seminar_2014/0202.pdf鄧立,胡凌(2010)。基於TPACK模型對優秀EFL教師知識體系的個案探究。第九屆全國國際商務英語研討會。取自https://www.researchgate.net/publication/ 267041995_jiyu_TPACK_moxingduiyouxiu_EFL_jiaoshizhishitixidegeantanjiu鍾秋嬌 (2017)。以服務設計思考為基礎的跨領域教學設計與評估。南開學報,14(1),11-21。取自http://163.22.228.106:8080/bitstream/987654321/4431/1/%E4%BB%A5%E6%9C%8D%E5%8B%99%E8%A8%AD%E8%A8%88%E6%80%9D%E8%80%83%E7%82%BA%E5%9F%BA%E7%A4%8E%E7%9A%84.pdf英文部分Arendt, A. M., & Shelton, B. E. (2009). Incentives and disincentives for the use of Open Course Ware. The International Review of Research in Open and Distributed Learning, 10(5).Alrwaished, N., Alkandari, A., & Alhashem, F. (2017). Exploring in-and pre-service science and mathematics teachers’ technology, pedagogy, and content knowledge (TPACK): What next?. Eurasia Journal of Mathematics, Science and Technology Education, 13(9), 6113-6131.Bereiter, C., & Scardamalia, M. (2010). Can children really create knowledge?. Canadian Journal of Learning and Technology/La revue canadienne de l’apprentissage et de la technologie, 36(1).Bennett, S., Lockyer, L., & Agostinho, S. (2018). Towards sustainable technology‐enhanced innovation in higher education: Advancing learning design by understanding and supporting teacher design practice. British Journal of Educational Technology, 49(6), 1014-1026.Brown, T. (2009). Change by design. Retrieved from http://bsili.3csn.org/files/2013/06/change-by-design-brown-e.pdfBrown, T., & Wyatt, J. (2010). Design thinking for social innovation. Development Outreach, 12(1), 29-43.Bybee, R. W. (2009). The BSCS 5E instructional model and 21st century skills. Colorado Springs, CO: BSCS.Boes, M. (2000). Growing Mathematical Ideas in Kindergarten. Teaching Children Mathematics, 6(5), 337-340Chai, C. S., & Tan, S. C. (2009). Professional development of teachers for computer-supported collaborative learning: A knowledge-building approach. Teachers College Record, 111(5), 1296-1327.Chai, C. S., Koh, J. H. L., & Tsai, C. C. (2013). A review of technological pedagogical content knowledge. Journal of Educational Technology & Society, 16(2), 31-51.Chai, C. S., & Koh, J. H. L. (2017). Changing teachers’ TPACK and design beliefs through the Scaffolded TPACK Lesson Design Model (STLDM). Learning: Research and Practice, 3(2), 114-129.Cheng, K. W. (2011). A model for developing industry demand-driven e-learning curricula under ADDIE. World Transactions on Engineering and Technology Education, 9(1), 18-24.Cesareni, D., Cacciamani, S., & Fujita, N. (2016). Role taking and knowledge building in a blended university course. International Journal of Computer-Supported Collaborative Learning, 11(1), 9-39.Collins, A. (1996). Design issues for learning environments. International perspectives on the design of technology-supported learning environments, 347-361.Doering, A., Veletsianos, G., Scharber, C., & Miller, C. (2009). Using the technological, pedagogical, and content knowledge framework to design online learning environments and professional development. Journal of Educational Computing Research, 41(3), 319-346.Egan, J., Williams, C., Dixon-Hardy, J., & Ellwood, P. (2013, December). When science meets innovation: A new model of research translation. In ISPIM Innovation Symposium (p. 1). The International Society for Professional Innovation Management (ISPIM)Elbaz, F. (1983). Teacher thinking: A study of practical knowledge. London: Croom Helm.Fadel, C. (May 2008). 21st Century Skills: How can you prepare students for the new GlobalEconomy? Retrieved from http://www.oecd.org/site/educeri21st/40756908.pdfFang, S. C., Hsu, Y. S., & Lin, S. S. (2018). Conceptualizing socioscientific decision making from a review of research in science education. International Journal of Science and Mathematics Education, 1-22.Gachago, D., Morkel, J., Hitge, L., van Zyl, I., & Ivala, E. (2017). Developing e-learning champions: A design thinking approach. International Journal of Educational Technology in Higher Education, 14(1), DOI 10.1186/s41239-017-0068-8Gómez-Rey, P., Barbera, E., & Fernández-Navarro, F. (2017). Student voices on the roles of instructors in asynchronous learning environments in the 21st Century. The International Review of Research in Open and Distributed Learning, 18(2).Gokdas, I., & Torun, F. (2017). Examining the impact of instructional technology and material design courses on technopedagogical education competency acquisition according to different variables. Kuram ve Uygulamada Egitim Bilimleri, 17(5), 1733-1758.Hänze, M., Müller, M., & Berger, R. (2018). Cross-age tutoring: How to promote tutees’ active knowledge-building. Educational Psychology, 1-12.Hatano, G. (1986). Inagaki K. Stevenson H, Azuma H, Hakuta K. Two courses of expertise. Child development and education in Japan.Hod, Y., & Ben-Zvi, D. (2018). Co-development patterns of knowledge, experience, and self in humanistic knowledge building communities. Instructional Science, 1-27.Hong, H. Y., & Sullivan, F. R. (2009). Towards an idea-centered, principle-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57(5), 613-627.Hong, H. Y., Scardamalia, M., & Zhang, J. (2010). Knowledge society network: Toward a dynamic, sustained network for building knowledge. Canadian Journal of Learning and Technology/La revue canadienne de l’apprentissage et de la technologie, 36(1).Hong, H. Y. (2011). Beyond Group Collaboration: Facilitating an Idea-centered View of Collaboration through Knowledge Building in a Science Class of Fifth-graders. Asia-Pacific Education Researcher (De La Salle University Manila), 20(2).Hong, H. Y., Chen, F. C., Chai, C. S., & Chan, W. C. (2011). Teacher-education students’ views about knowledge building theory and practice. Instructional Science, 39(4), 467-482.Hong, H. Y., Scardamalia, M., Messina, R., & Teo, C. L. (2015). Fostering sustained idea improvement with principle-based knowledge building analytic tools. Computers & Education, 89, 91-102.Hong, H. Y., & Chai, C. S. (2017). Principle-based design: Development of adaptive mathematics teaching practices and beliefs in a knowledge building environment. Computers & Education, 115, 38-55.IDEO (2011). Design thinking toolkit for educators. Retrieved from http://www.designthinkingforeducators.com/Jamieson-Proctor, R., Finger, G., Albion, P., Cavanagh, R., Fitzgerald, R., Bond, T., & Grimbeek, P. (2012). Teaching teachers for the future (TTF) project: Development of the TTF TPACK survey instrument. In Proceedings of the 2012 Australian Computers in Education Conference (ACEC 2012). Australian Council for Computers in Education.Jang, S. -J., & Chen, K. C. (2010). From PCK to TPACK: Developing a transformative model of pre-service science teachers. Journal of Science Education and Technology, 19(6), 553-564Jen, T. H., Yeh, Y. F., Hsu, Y. S., Wu, H. K., & Chen, K. M. (2016). Science teachers` TPACK-Practical: Standard-setting using an evidence-based approach. Computers & Education, 95, 45-62.Koh, J. H., & Divaharan, H. (2011). Developing pre-service teachers` technology integration expertise through the TPACK-developing instructional model. Journal of Educational Computing Research, 44(1), 35-58.Koh, J. H. L., Chai, C. S., Hong, H. Y., & Tsai, C. C. (2015). A survey to examine teachers’ perceptions of design dispositions, lesson design practices, and their relationships with technological pedagogical content knowledge (TPACK). Asia-Pacific Journal of Teacher Education, 43(5), 378-391.doi:10.1080/1359866X.2014.941280Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. Y. (2015). Design thinking and education. In Design Thinking for Education. Springer, Singapore.Koh, J. H. L., & Divaharan, H. (2011). Developing pre-service teachers` technology integration expertise through the TPACK-developing instructional model. Journal of Educational Computing Research, 44(1), 35-58.Koh, J. H. L., Woo, H. L., & Lim, W. Y. (2013). Understanding the relationship between Singapore preservice teachers’ ICT course experiences and technological pedagogical content knowledge (TPACK) through ICT course evaluation. Educational Assessment, Evaluation and Accountability, 25(4), 321-339.Koh, J. H. L., & Chai, C. S. (2014). Teacher clusters and their perceptions of technological pedagogical content knowledge (TPACK) development through ICT lesson design. Computers & Education, 70, 222-232.Koh, J. H. L., Chai, C. S., & Lim, W. Y. (2017). Teacher professional development for TPACK-21CL: Effects on teacher ICT integration and student outcomes. Journal of Educational Computing Research, 55(2), 172-196.Laurillard, D. (2012). Teaching as a design science. building pedagogical patterns for learning and technology.Lin, C. Y., & Reigeluth, C. M. (2016). Scaffolding wiki‐supported collaborative learning for small‐group projects and whole‐class collaborative knowledge building. Journal of Computer Assisted Learning, 32(6), 529-547.Lin, F., & Chan, C. K. (2018). Promoting elementary students’ epistemology of science through computer-supported knowledge-building discourse and epistemic reflection. International Journal of Science Education, 40(6), 668-687.Lockwood, T. (2009). Frameworks of design thinking. Design Management Journal, 4(1), 3-3.Ministry of Education Finland (2018). Education Policy. Retrieved from https://www.oph.fi/englishMinistry of Education Singapore (2018). Learn for life: Preparing our students to excel beyond exam results. Retrieved from https://www.moe.gov.sg/news/speeches/opening-address-by-mr-ong-ye-kung--minister-for-education--at-the-schools-work-plan-seminarMishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology iin teacher knowledge. Teachers college record, 108(6), 1017-1054.Muhonen, H., Rasku-Puttonen, H., Pakarinen, E., Poikkeus, A. M., & Lerkkanen, M. K. (2016). Scaffolding through dialogic teaching in early school classrooms. Teaching and teacher education, 55, 143-154.Mulholland, J., & Wallace, J. (2005). Growing the tree of teacher knowledge: Ten years of learning to teach elementary science. Journal of Research in Science Teaching, 42(7), 767-790.Niess, M. L. (2011). Investigating TPACK: Knowledge growth in teaching with technology. Journal of educational computing research, 44(3), 299-317.Nortvig, A. M., & Christiansen, R. B. (2017). Institutional Collaboration on MOOCs in Education—A Literature Review. The International Review of Research in Open and Distributed Learning, 18(6).Nguyen, G. N., & Bower, M. (2018). Novice teacher technology‐enhanced learning design practices: The case of the silent pedagogy. British Journal of Educational Technology, 49(6), 1027-1043.Rosenberg, J. M., & Koehler, M. J. (2015). Context and technological pedagogical content knowledge (TPACK): A systematic review. Journal of Research on Technology in Education, 47(3), 186-210.Seashore Louis, K. & Lee, M. (2016). Teachers’ capacity for organizational learning: the effects of school culture and context. School Effectiveness and School Improvement, 27(4), 534-556.Schank, R. C., Fano, A., Bell, B., & Jona, M. (1993). The Design of Goal-Based Scenarios. The Journal of the Learning Sciences, 3(4), 305-345. Taylor & Francis, Ltd. Stable. Retrieved from: http://www.jstor.org/stable/1466619Schank, R. C., Fano, A., Bell, B., & Jona, M. (1994). The design of goal-based scenarios. The journal of the learning sciences, 3(4), 305-345.Schank, R. C., & Jona, K. (1999). Extracurriculars as the curriculum: A vision of education for the 21st century. Retrieved from http://idc-america.org/wp-content/uploads/2011/10/New_Approach_to_education.pdfSuyanto, S., & Wibowo, Y. (2018, September). Curriculum Review of Teacher Professional Development Program Based on Biology Teacher Profile in Technological Pedagogical and Content Knowledge. In Journal of Physics: Conference Series (Vol. 1097, No. 1, p. 012042). IOP Publishing.Singapore Government (2017). Skills Future. Retrieved from http://www.skillsfuture.sg/Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.Sykes, J. A. (2016). The whole school library learning commons: An Educator`s Guide. America: ABC-CLIO.Tao, D., & Zhang, J. (2018). Forming shared inquiry structures to support knowledge building in a grade 5 community. Instructional Science, 46(4), 563-592.Tee, M. Y., & Lee, S. S. (2011). SECI-driven Problem-based Learning for Cultivating Technological Pedagogical Content Knowledge.van Aalst, J., & Truong, M. S. (2011). Promoting knowledge creation discourse in an Asian primary five classroom: Results from an inquiry into life cycles. International Journal of Science Education, 33(4), 487-515.Winter, E. C., & McGhie‐Richmond, D. (2005). Using computer conferencing and case studies to enable collaboration between expert and novice teachers. Journal of Computer Assisted Learning, 21(2), 118-129.Wyeld, T., & Nakayama, M. (2018). The K-12 learn-to-code movement is leaving current graduates behind: Status and a case study. In International Conference on Technology in Education, 168-178. Springer, Singapore.Yeh, Y. F., Lin, T. C., Hsu, Y. S., Wu, H. K., & Hwang, F. K. (2015). Science teachers’ proficiency levels and patterns of TPACK in a practical context. Journal of Science Education and Technology, 24(1), 78-90. 描述 碩士
國立政治大學
教育學系
105152014資料來源 http://thesis.lib.nccu.edu.tw/record/#G1051520141 資料類型 thesis dc.contributor.advisor 洪煌堯 zh_TW dc.contributor.advisor Hong, Huang-Yao en_US dc.contributor.author (作者) 薛智暉 zh_TW dc.contributor.author (作者) Seet, Chih Hui en_US dc.creator (作者) 薛智暉 zh_TW dc.creator (作者) Seet, Chih Hui en_US dc.date (日期) 2019 en_US dc.date.accessioned 5-九月-2019 17:16:53 (UTC+8) - dc.date.available 5-九月-2019 17:16:53 (UTC+8) - dc.date.issued (上傳時間) 5-九月-2019 17:16:53 (UTC+8) - dc.identifier (其他 識別碼) G1051520141 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/125851 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 教育學系 zh_TW dc.description (描述) 105152014 zh_TW dc.description.abstract (摘要) 隨著科技的急速進步,學習媒介不斷推陳出新,比起過往重視教學內容統一的教育,如今的教育更強調如何設計課程內容來讓孩子進行自主學習。故教師應與時俱進掌握相關科技應用技能、提昇自我對教學資源再設計的能力,以改變與創新適合學生學習的教學方式。本研究旨在瞭解及檢測一個以想法為中心的知識翻新活動對提升職前教師在數位資源教材設計能力上的影響。本研究以個案方式進行。對象為38名選修『教學媒體與應用』課程的職前教師。主要的學習任務為設計一線上課程。整體活動進行皆在一知識翻新環境上,並以知識翻新原則做引導。課前及課後分別讓受試者填寫『設計導向教師專業整合知能』問卷,並參考設計思考的步驟於課間進行兩輪的想法發展活動。每輪活動結束前,小組間相互體驗、測試他組所設計的線上課程作品,以便給予設計者回饋或修改的建議。課程活動設計的部分,主要是將學生隨機分為十個小組。之後,各組可以自由選定授課主題,但必須要以協助偏鄉師資不足孩童自主學習為目標,設計內容應至少具備三週約150分鐘的課程時間,且應做到能讓學生將所學習到的內容運用在現實生活中,最後要在學期結束時展示教案及網頁介面的設計成果。在資料收集方面以質量混合方式進行,包含學生在知識論壇(KF6)平台中的教案內容、想法討論貼文、回饋與建議、線上課程網頁介面、設計行為的錄影、小組半結構訪談、及問卷等。質化資料以NVivo軟體的輔助,採開放編碼的概念進行分析,量化部分則利用SPSS、行為序列分檢定、及KBDeX等進行處理。研究結果顯示,職前教師的想法及設計行為經過想法中心的知識翻新活動後,有明顯地從發散雜亂的樣式變得更聚焦收斂,整體上多數組別皆能設計出有創意而又與現實生活鏈接的線上課程,職前教師不僅強化了自身的科技整合設計實務技能, 在教師專業知識及設計信念上亦有著統計上顯著的提升。 zh_TW dc.description.abstract (摘要) Due to the rapid advancement of learning technologies, today`s education was able to help students develop more extensive, integrated, and cross-disciplinary knowledge or skills. The easy access to all kinds of learning technologies also results in an increasing interest among teachers to customarily design suitable curriculum content to help children learn in a more independent manner. Nevertheless, how to help future teachers to strengthen their teaching profession and design skills remains to be explored. As such, this case study aims to examine the impact of an idea-centered, technology-enhanced knowledge building activities on promoting pre-service teachers’ design skills.Thirty-eight pre-service teachers who took a course entitled “Educational Media and Application” participated in this study. The main course requirement was that students need to design an online learning course for students from a school located in a remote rural area. The overall activities were carried out in an online environment under the guidance of knowledge-building principles that encourage participants to continuously improve their design ideas. Before (and also after) the class, a questionnaire was employed. Then, participants went through two cycles of design thinking activities that highlight sustained idea generation and development. At the end of each design-thinking cycle, each group was invited to try and test the online courses designed by other groups and then give feedback and suggestions to help one another improve the design of all groups’ online courses.Pedagogically, this study first randomly divided students into ten groups. Then, each group needed to decide a topic of their interest for their online course. An important goal for the participating groups to design online courses is to help their potential students from remote rural areas to engage in self-directed learning so as to help address a recurring problem of insufficient teacher supply there. The online course each group designed needs to at least contain three-week class learning time (approximately 150 minutes) so as to give students plenty opportunities to use the learnt knowledge or skills in addressing some authentic problems related to their daily life. The participating groups were also required to present their final projects (including their lesson plans and the interface of their online courses in a web form) at the end of the semester.In terms of data collection, both quantitative and qualitative data were collected by using a mixed-method approach. Data collected included the learning content designed by pre-service teachers, their online discussion posts, peer feedback and suggestions provided, the online interface of the designed courses, video-recorded design behaviours, semi-structured interviews for all groups, and pre-and-post surveys. The qualitative data were analysed by using the NVivo software, with the help of an open coding procedure, and the quantitative data were processed through the SPSS software, with the help of behaviour sequence analysis tool.The result showed that the pre-service teachers were able to improve their design capacity and their ideas and design behaviours gradually became more focused on the quality of the online course as the semester proceeds. Moreover, the results from the surveys also showed that most of the online course content designed by these pre-service teachers were creative and useful. It was also found that the participants have not only improved their design proficiency but also significantly changed their design belief and knowledge. en_US dc.description.tableofcontents 目錄謝誌 i摘要 iii目錄 vi表目錄 viii圖目錄 ix第一章 緒論 1第一節 研究背景 1第二節 研究目的與待答問題 4第三節 名詞解釋 5第四節 研究範圍與限制 8第二章 文獻探討 11第一節 想法為中心的知識翻新活動 11第二節 教師專業發展與知識的整合 21第三節 教師的設計能力與線上課程的設計 28第三章 研究方法 38第一節 研究架構 38第二節 研究對象 42第三節 學習環境 43第四節 實施程序 45第五節 資料來源與分析 46第四章 資料分析與結果 60第一節 想法為中心知識翻新對職前教師設計導向的教師專業整合知識與能力的影響 60第二節 線上課程設計平台介面與教案內容之分析 62第三節 線上課程設計歷程與想法中心知識翻新結果之關係 72第四節 職前教師對線上課程設計的協作歷程與想法發展情形 90第五章 結論與建議 101參考文獻 109附錄1- 檢測教師整合能力與設計信念量表 120附錄2-對設計的半結構式訪談 123附錄3 教學環境佈置與設計評分 124附錄4各組別教案與教學平台之教學架構與環境設計結果分析 126 zh_TW dc.format.extent 26716647 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G1051520141 en_US dc.subject (關鍵詞) 想法中心知識翻新 zh_TW dc.subject (關鍵詞) 科技整合設計知能 zh_TW dc.subject (關鍵詞) 教師設計信念 zh_TW dc.subject (關鍵詞) 線上課程 zh_TW dc.subject (關鍵詞) 設計能力 zh_TW dc.subject (關鍵詞) Idea-centered knowledge building en_US dc.subject (關鍵詞) Technology-integrated design knowledge(TIDK) en_US dc.subject (關鍵詞) Design belief of teacher (DBT) en_US dc.subject (關鍵詞) Online course en_US dc.subject (關鍵詞) Design ability en_US dc.title (題名) 想法中心的知識翻新活動對職前教師知識整合與設計能力影響 zh_TW dc.title (題名) Effects of Idea-centered Knowledge Building activities on Preservice Teachers’ Knowledge Integration and Design Ability en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 中文部分台大創新設計學院 (2016) 。設計思考課程及工作坊分享。取自https://medium.com/@debbyyungjenhsu呂紹弘(2017)。從十二年國教及師資培育政策 探討教師核心能力及教師評鑑制度。校務經營個案研究實務研討會成果集合,45-72。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/42/pta_15405_2304613_37818.pdf吳岳剛 (2012)。廣告創意: 理論與實務的對話。 國立政治大學。吳斯茜(2016)。 數位與實體情境模擬的訓練設計。國家文官學院T&D 飛訊,220,1-16。林偉文 (2011) 。 創意教學與創造力的培育-以設計思考為例。教育資料與研究雙月刊,100, 53-57。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/25/pta_5937_8657655_86269.pdf范信賢(2016) 。 核心素養與十二年國民基本教育課程綱要: 導讀《 國民核心素養: 十二年國教課程改革的 DNA》。 教育脈動, (5) , 1-7。洪立萍(2018)。2018 十大創新科技趨勢及對產業的衝擊。國家實驗研究院科技政策研究與資訊中心科技發展觀測平台。取自file:///Users/HSet/Downloads/2018%E5%8D%81%E5%A4%A7%E5%89%B5%E6%96%B0%E7%A7%91%E6%8A%80%E8%B6%A8%E5%8B%A2_20181106V.3.pdf陳聖智 (2012a)。 從設計思考到設計再思: 學術知識與實務經驗的對話。 廣告學研究,37,105-110。陳聖智(2012b)。基於科學知識與工程技術之互動科技設計知能、想像力與學習成效評測。國科會研究計畫(102-2511-S-004-003)。臺北市:科技部。陳俊宏(2014)。專題導向教學平台設計與學習成效之研究(未出版之碩士論文)。 國立臺中教育大學數位內容科技學系, 臺中市。陳國泰(2018)。提升中小學教師的 TPACK 之有效策略。臺灣教育評論月刊,2018, 7(1), 227-235 。取自http://wportfolio.wzu.edu.tw/ezfiles/0/1000/academic/ 92/academic_78662_24973_04945.pdf陳國生(2017)。十二年國教下校本教師專業成長模式之探討: 以專業學習社群作為教師專業成長協作平台。106 校務經營個案研究實務研討會成果集。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/42/pta_15404_4650030_37818.pdf侯世光,張玉山(2005)。「創意設計與製作」活動設計的基礎。教育部教育雲教育大市集。取自https://market.cloud.edu.tw/黃毅英(2008)。從「華人學習者現象」 到「香港學習者現象」。教育研究與發展期刊, 4(2)。黃旭鈞(2013)。 促進「沒有教師落後」:協助不適任教師成長的策略。臺灣教育評論月刊,2(12), 86-92。教育部(2016)。2020 資訊教育總藍圖。臺北市: 教育部。取自 http://ws. moe. edu. tw/001. Upload/3/relfile/6315/46563/65ebb64a-683c-4f7a-bcf0-325113ddb436. pdf.教育部資訊及科技教育司(2016)。 新一代數位學習計畫。取自https://www.edu.tw/News_Content.aspx?n=9E7AC85F1954DDA8&s=97F7B762D213051F教育部國民及學前教育署(2017)。十二年國民基本教育實施計畫。取自http://12basic.edu.tw/content.php?ParentNo=8&LevelNo=8國立交通大學 (2017)。科技不斷加速的時代還如何談百年樹人。數理人文期刊,12。台灣: 國立交通大學丘成桐中心,取自https://ir.nctu.edu.tw/bitstream/11536/137375/1/yaucenter-170702.pdf張德齡(2016)。 教室應該不一樣主題式教學。 取自https://gfamily.cwgv.com.tw/content/index/3922董豔,桑國元,蔡敬新(2014)。師範生TPACK 知識的實證研究。教師教育研究, 26(3)。楊家睿 (2017)。探討線上知識翻新之探究活動與科學家意象之關係:以個案研究為例(未出版之碩士論文)。國立政治大學,臺北市。親子天下 (2017)。設計思考從教育開始的破框思維。台北市:天下雜誌。蔡敬新,陳誠志,鄧峰 (2011)。新加坡職前教師培訓課程的設計與評價。化學教育,2011(8)。蔡銘修,陳振元 (2014)。情境模擬於數位學習之重要性: 著重學生該做什麼。2014年大學遠距教學認證成果發表暨學術研討會論文集。取自https://ace.moe.edu.tw/events_file/seminar_2014/0202.pdf鄧立,胡凌(2010)。基於TPACK模型對優秀EFL教師知識體系的個案探究。第九屆全國國際商務英語研討會。取自https://www.researchgate.net/publication/ 267041995_jiyu_TPACK_moxingduiyouxiu_EFL_jiaoshizhishitixidegeantanjiu鍾秋嬌 (2017)。以服務設計思考為基礎的跨領域教學設計與評估。南開學報,14(1),11-21。取自http://163.22.228.106:8080/bitstream/987654321/4431/1/%E4%BB%A5%E6%9C%8D%E5%8B%99%E8%A8%AD%E8%A8%88%E6%80%9D%E8%80%83%E7%82%BA%E5%9F%BA%E7%A4%8E%E7%9A%84.pdf英文部分Arendt, A. M., & Shelton, B. E. (2009). Incentives and disincentives for the use of Open Course Ware. The International Review of Research in Open and Distributed Learning, 10(5).Alrwaished, N., Alkandari, A., & Alhashem, F. (2017). Exploring in-and pre-service science and mathematics teachers’ technology, pedagogy, and content knowledge (TPACK): What next?. Eurasia Journal of Mathematics, Science and Technology Education, 13(9), 6113-6131.Bereiter, C., & Scardamalia, M. (2010). Can children really create knowledge?. Canadian Journal of Learning and Technology/La revue canadienne de l’apprentissage et de la technologie, 36(1).Bennett, S., Lockyer, L., & Agostinho, S. (2018). Towards sustainable technology‐enhanced innovation in higher education: Advancing learning design by understanding and supporting teacher design practice. British Journal of Educational Technology, 49(6), 1014-1026.Brown, T. (2009). Change by design. Retrieved from http://bsili.3csn.org/files/2013/06/change-by-design-brown-e.pdfBrown, T., & Wyatt, J. (2010). Design thinking for social innovation. Development Outreach, 12(1), 29-43.Bybee, R. W. (2009). The BSCS 5E instructional model and 21st century skills. Colorado Springs, CO: BSCS.Boes, M. (2000). Growing Mathematical Ideas in Kindergarten. Teaching Children Mathematics, 6(5), 337-340Chai, C. S., & Tan, S. C. (2009). Professional development of teachers for computer-supported collaborative learning: A knowledge-building approach. Teachers College Record, 111(5), 1296-1327.Chai, C. S., Koh, J. H. L., & Tsai, C. C. (2013). A review of technological pedagogical content knowledge. Journal of Educational Technology & Society, 16(2), 31-51.Chai, C. S., & Koh, J. H. L. (2017). Changing teachers’ TPACK and design beliefs through the Scaffolded TPACK Lesson Design Model (STLDM). Learning: Research and Practice, 3(2), 114-129.Cheng, K. W. (2011). A model for developing industry demand-driven e-learning curricula under ADDIE. World Transactions on Engineering and Technology Education, 9(1), 18-24.Cesareni, D., Cacciamani, S., & Fujita, N. (2016). Role taking and knowledge building in a blended university course. International Journal of Computer-Supported Collaborative Learning, 11(1), 9-39.Collins, A. (1996). Design issues for learning environments. International perspectives on the design of technology-supported learning environments, 347-361.Doering, A., Veletsianos, G., Scharber, C., & Miller, C. (2009). Using the technological, pedagogical, and content knowledge framework to design online learning environments and professional development. Journal of Educational Computing Research, 41(3), 319-346.Egan, J., Williams, C., Dixon-Hardy, J., & Ellwood, P. (2013, December). When science meets innovation: A new model of research translation. In ISPIM Innovation Symposium (p. 1). The International Society for Professional Innovation Management (ISPIM)Elbaz, F. (1983). Teacher thinking: A study of practical knowledge. London: Croom Helm.Fadel, C. (May 2008). 21st Century Skills: How can you prepare students for the new GlobalEconomy? Retrieved from http://www.oecd.org/site/educeri21st/40756908.pdfFang, S. C., Hsu, Y. S., & Lin, S. S. (2018). Conceptualizing socioscientific decision making from a review of research in science education. International Journal of Science and Mathematics Education, 1-22.Gachago, D., Morkel, J., Hitge, L., van Zyl, I., & Ivala, E. (2017). Developing e-learning champions: A design thinking approach. International Journal of Educational Technology in Higher Education, 14(1), DOI 10.1186/s41239-017-0068-8Gómez-Rey, P., Barbera, E., & Fernández-Navarro, F. (2017). Student voices on the roles of instructors in asynchronous learning environments in the 21st Century. The International Review of Research in Open and Distributed Learning, 18(2).Gokdas, I., & Torun, F. (2017). Examining the impact of instructional technology and material design courses on technopedagogical education competency acquisition according to different variables. Kuram ve Uygulamada Egitim Bilimleri, 17(5), 1733-1758.Hänze, M., Müller, M., & Berger, R. (2018). Cross-age tutoring: How to promote tutees’ active knowledge-building. Educational Psychology, 1-12.Hatano, G. (1986). Inagaki K. Stevenson H, Azuma H, Hakuta K. Two courses of expertise. Child development and education in Japan.Hod, Y., & Ben-Zvi, D. (2018). Co-development patterns of knowledge, experience, and self in humanistic knowledge building communities. Instructional Science, 1-27.Hong, H. Y., & Sullivan, F. R. (2009). Towards an idea-centered, principle-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57(5), 613-627.Hong, H. Y., Scardamalia, M., & Zhang, J. (2010). Knowledge society network: Toward a dynamic, sustained network for building knowledge. Canadian Journal of Learning and Technology/La revue canadienne de l’apprentissage et de la technologie, 36(1).Hong, H. Y. (2011). Beyond Group Collaboration: Facilitating an Idea-centered View of Collaboration through Knowledge Building in a Science Class of Fifth-graders. Asia-Pacific Education Researcher (De La Salle University Manila), 20(2).Hong, H. Y., Chen, F. C., Chai, C. S., & Chan, W. C. (2011). Teacher-education students’ views about knowledge building theory and practice. Instructional Science, 39(4), 467-482.Hong, H. Y., Scardamalia, M., Messina, R., & Teo, C. L. (2015). Fostering sustained idea improvement with principle-based knowledge building analytic tools. Computers & Education, 89, 91-102.Hong, H. Y., & Chai, C. S. (2017). Principle-based design: Development of adaptive mathematics teaching practices and beliefs in a knowledge building environment. Computers & Education, 115, 38-55.IDEO (2011). Design thinking toolkit for educators. Retrieved from http://www.designthinkingforeducators.com/Jamieson-Proctor, R., Finger, G., Albion, P., Cavanagh, R., Fitzgerald, R., Bond, T., & Grimbeek, P. (2012). Teaching teachers for the future (TTF) project: Development of the TTF TPACK survey instrument. In Proceedings of the 2012 Australian Computers in Education Conference (ACEC 2012). Australian Council for Computers in Education.Jang, S. -J., & Chen, K. C. (2010). From PCK to TPACK: Developing a transformative model of pre-service science teachers. Journal of Science Education and Technology, 19(6), 553-564Jen, T. H., Yeh, Y. F., Hsu, Y. S., Wu, H. K., & Chen, K. M. (2016). Science teachers` TPACK-Practical: Standard-setting using an evidence-based approach. Computers & Education, 95, 45-62.Koh, J. H., & Divaharan, H. (2011). Developing pre-service teachers` technology integration expertise through the TPACK-developing instructional model. Journal of Educational Computing Research, 44(1), 35-58.Koh, J. H. L., Chai, C. S., Hong, H. Y., & Tsai, C. C. (2015). A survey to examine teachers’ perceptions of design dispositions, lesson design practices, and their relationships with technological pedagogical content knowledge (TPACK). Asia-Pacific Journal of Teacher Education, 43(5), 378-391.doi:10.1080/1359866X.2014.941280Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H. Y. (2015). Design thinking and education. In Design Thinking for Education. Springer, Singapore.Koh, J. H. L., & Divaharan, H. (2011). Developing pre-service teachers` technology integration expertise through the TPACK-developing instructional model. Journal of Educational Computing Research, 44(1), 35-58.Koh, J. H. L., Woo, H. L., & Lim, W. Y. (2013). Understanding the relationship between Singapore preservice teachers’ ICT course experiences and technological pedagogical content knowledge (TPACK) through ICT course evaluation. Educational Assessment, Evaluation and Accountability, 25(4), 321-339.Koh, J. H. L., & Chai, C. S. (2014). Teacher clusters and their perceptions of technological pedagogical content knowledge (TPACK) development through ICT lesson design. Computers & Education, 70, 222-232.Koh, J. H. L., Chai, C. S., & Lim, W. Y. (2017). Teacher professional development for TPACK-21CL: Effects on teacher ICT integration and student outcomes. Journal of Educational Computing Research, 55(2), 172-196.Laurillard, D. (2012). Teaching as a design science. building pedagogical patterns for learning and technology.Lin, C. Y., & Reigeluth, C. M. (2016). Scaffolding wiki‐supported collaborative learning for small‐group projects and whole‐class collaborative knowledge building. Journal of Computer Assisted Learning, 32(6), 529-547.Lin, F., & Chan, C. K. (2018). Promoting elementary students’ epistemology of science through computer-supported knowledge-building discourse and epistemic reflection. International Journal of Science Education, 40(6), 668-687.Lockwood, T. (2009). Frameworks of design thinking. Design Management Journal, 4(1), 3-3.Ministry of Education Finland (2018). Education Policy. Retrieved from https://www.oph.fi/englishMinistry of Education Singapore (2018). Learn for life: Preparing our students to excel beyond exam results. Retrieved from https://www.moe.gov.sg/news/speeches/opening-address-by-mr-ong-ye-kung--minister-for-education--at-the-schools-work-plan-seminarMishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for integrating technology iin teacher knowledge. Teachers college record, 108(6), 1017-1054.Muhonen, H., Rasku-Puttonen, H., Pakarinen, E., Poikkeus, A. M., & Lerkkanen, M. K. (2016). Scaffolding through dialogic teaching in early school classrooms. Teaching and teacher education, 55, 143-154.Mulholland, J., & Wallace, J. (2005). Growing the tree of teacher knowledge: Ten years of learning to teach elementary science. Journal of Research in Science Teaching, 42(7), 767-790.Niess, M. L. (2011). Investigating TPACK: Knowledge growth in teaching with technology. Journal of educational computing research, 44(3), 299-317.Nortvig, A. M., & Christiansen, R. B. (2017). Institutional Collaboration on MOOCs in Education—A Literature Review. The International Review of Research in Open and Distributed Learning, 18(6).Nguyen, G. N., & Bower, M. (2018). Novice teacher technology‐enhanced learning design practices: The case of the silent pedagogy. British Journal of Educational Technology, 49(6), 1027-1043.Rosenberg, J. M., & Koehler, M. J. (2015). Context and technological pedagogical content knowledge (TPACK): A systematic review. Journal of Research on Technology in Education, 47(3), 186-210.Seashore Louis, K. & Lee, M. (2016). Teachers’ capacity for organizational learning: the effects of school culture and context. School Effectiveness and School Improvement, 27(4), 534-556.Schank, R. C., Fano, A., Bell, B., & Jona, M. (1993). The Design of Goal-Based Scenarios. The Journal of the Learning Sciences, 3(4), 305-345. Taylor & Francis, Ltd. Stable. Retrieved from: http://www.jstor.org/stable/1466619Schank, R. C., Fano, A., Bell, B., & Jona, M. (1994). The design of goal-based scenarios. The journal of the learning sciences, 3(4), 305-345.Schank, R. C., & Jona, K. (1999). Extracurriculars as the curriculum: A vision of education for the 21st century. Retrieved from http://idc-america.org/wp-content/uploads/2011/10/New_Approach_to_education.pdfSuyanto, S., & Wibowo, Y. (2018, September). Curriculum Review of Teacher Professional Development Program Based on Biology Teacher Profile in Technological Pedagogical and Content Knowledge. In Journal of Physics: Conference Series (Vol. 1097, No. 1, p. 012042). IOP Publishing.Singapore Government (2017). Skills Future. Retrieved from http://www.skillsfuture.sg/Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.Sykes, J. A. (2016). The whole school library learning commons: An Educator`s Guide. America: ABC-CLIO.Tao, D., & Zhang, J. (2018). Forming shared inquiry structures to support knowledge building in a grade 5 community. Instructional Science, 46(4), 563-592.Tee, M. Y., & Lee, S. S. (2011). SECI-driven Problem-based Learning for Cultivating Technological Pedagogical Content Knowledge.van Aalst, J., & Truong, M. S. (2011). Promoting knowledge creation discourse in an Asian primary five classroom: Results from an inquiry into life cycles. International Journal of Science Education, 33(4), 487-515.Winter, E. C., & McGhie‐Richmond, D. (2005). Using computer conferencing and case studies to enable collaboration between expert and novice teachers. Journal of Computer Assisted Learning, 21(2), 118-129.Wyeld, T., & Nakayama, M. (2018). The K-12 learn-to-code movement is leaving current graduates behind: Status and a case study. In International Conference on Technology in Education, 168-178. Springer, Singapore.Yeh, Y. F., Lin, T. C., Hsu, Y. S., Wu, H. K., & Hwang, F. K. (2015). Science teachers’ proficiency levels and patterns of TPACK in a practical context. Journal of Science Education and Technology, 24(1), 78-90. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU201900693 en_US