學術產出-學位論文
文章檢視/開啟
書目匯出
-
題名 以深度遞歸神經網路實施多重任務學習偵測假新聞
Deep Recurrent Neural Networks with Multi-Task Learning for Fake News Detection作者 劉永鈞
Liou, Yung-Jiun貢獻者 胡毓忠
Hu, Yuh-Jong
劉永鈞
Liou, Yung-Jiun關鍵詞 社交媒體
假新聞
錯誤資訊
多重任務學習
假新聞資料集
遞歸神經網路
傳統深度學習
Social Media
Fake News
Misinformation
Muti-Task Learning
PHEME
Fake News Dataset
Recurrent Neural Network
GRU
Traditional Deep Learning日期 2020 上傳時間 2-三月-2020 11:38:01 (UTC+8) 摘要 偵測假新聞是一項十分艱鉅的任務,包含偵測假新聞(Rumour Detection)、假新聞追蹤(Rumour Tracking)及立場分類(Stance Classification),從這些方法最終對假新聞作驗證(Rumour Verification)。欲做到辨識新聞的驗證以使讀者能閱讀到正確的新聞及資訊,本研究希望探索以多重任務學習(Multi-Task Learning, MTL)用於處理數量龐大的假新聞資料上,並比較與傳統深度學習的差異,達到自動辨識及判別假新聞的目的。本研究使用RumourEval、PHEME兩種假新聞資料集來進行深度遞歸神經網路(Recurrent Neural Network, RNN)中的GRU(Gate Recurrent Unit)演算法實作,並進行多重任務學習的訓練,對假新聞進行分類,進而找出處理識別假新聞的最佳參數。最後透過各種模擬實驗來比較改良過後的深度學習演算法(即GRU)與傳統深度學習的差異,並依據實驗結果進行量化與質化的分析。
Detecting fake news is a very difficult task, including Rumour Detection,Rumour Tracking and Stance Classification, and finally leading to Rumour Verification. To identify the authenticity of news so that readers can read the correct news and information, this research hopes to explore the use of Multi-Task Learning technology for processing a large number of fake news datasets and compare it with traditional deep learning, to achieve the purpose of automatically identifying and distinguishing fake news.This research uses two fake news datasets, RumourEval and PHEME,to implement the GRU (Gated Recurrent Unit) algorithm of the Recurrent Neural Network (RNN), and trains for multiple tasks to perform fake news classification to find the best parameters for handling fake news. Finally, through various simulation experiments, the differences between the improved and traditional deep learning algorithm will be compared, and quantitative and qualitative analysis is performed based on the experimental results參考文獻 [1] P. N. Howard, G. Bolsover, B. Kollanyi, S. Bradshaw, and L.-M. Neudert,\\Junk news and bots during the us election: What were michigan voterssharing over twitter," CompProp, OII, Data Memo, 2017.[2] E. Kochkina, M. Liakata, and A. Zubiaga, \\All-in-one: Multi-task learningfor rumour verification," arXiv preprint arXiv:1806.03713, 2018.[3] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, \\Detection and resolution of rumours in social media: A survey," ACM ComputingSurveys (CSUR), vol. 51, no. 2, p. 32, 2018.[4] Z. Zhao, P. Resnick, and Q. Mei, \\Enquiring minds: Early detection of rumorsin social media from enquiry posts," in Proceedings of the 24th InternationalConference on World Wide Web. International World Wide Web ConferencesSteering Committee, 2015, pp. 1395{1405.[5] L. Derczynski, K. Bontcheva, M. Liakata, R. Procter, G. W. S. Hoi, andA. Zubiaga, \\Semeval-2017 task 8: Rumoureval: Determining rumour veracity and support for rumours," arXiv preprint arXiv:1704.05972, 2017.[6] M. Mendoza, B. Poblete, and C. Castillo, \\Twitter under crisis: Can we trustwhat we rt?" in Proceedings of the first workshop on social media analytics.ACM, 2010, pp. 71{79.[7] R. Procter, F. Vis, and A. Voss, \\Reading the riots on twitter: methodological innovation for the analysis of big data," International journal of socialresearch methodology, vol. 16, no. 3, pp. 197{214, 2013.[8] M. Lukasik, P. Srijith, D. Vu, K. Bontcheva, A. Zubiaga, and T. Cohn,\\Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter," in Proceedings of the 54thAnnual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers), vol. 2, 2016, pp. 393{398.[9] E. Kochkina, M. Liakata, and I. Augenstein, \\Turing at semeval-2017 task 8:Sequential approach to rumour stance classification with branch-lstm," arXivpreprint arXiv:1704.07221, 2017.[10] T. Chen, X. Li, H. Yin, and J. Zhang, \\Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection," in PacificAsia Conference on Knowledge Discovery and Data Mining. Springer, 2018,pp. 40{52.[11] G. Giasemidis, C. Singleton, I. Agrafiotis, J. R. Nurse, A. Pilgrim, C. Willis,and D. V. Greetham, \\Determining the veracity of rumours on twitter," inInternational Conference on Social Informatics. Springer, 2016, pp. 185{205.[12] C. Boididou, S. Papadopoulos, Y. Kompatsiaris, S. Schifferes, and N. Newman, \\Challenges of computational verification in social multimedia," in Proceedings of the 23rd International Conference on World Wide Web. ACM,2014, pp. 743{748.[13] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,\\Detecting rumors from microblogs with recurrent neural networks." in Ijcai,2016, pp. 3818{3824.[14] S. Kwon, M. Cha, and K. Jung, \\Rumor detection over varying time windows," PloS one, vol. 12, no. 1, p. e0168344, 2017.[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, \\Empirical evaluationof gated recurrent neural networks on sequence modeling," arXiv preprintarXiv:1412.3555, 2014.[16] C. Wardle and H. Derakhshan, \\Information disorder: Toward an interdisciplinary framework for research and policy making," Council of Europe Report,vol. 27, 2017.[17] A. Zubiaga, M. Liakata, R. Procter, G. W. S. Hoi, and P. Tolmie, \\Analysinghow people orient to and spread rumours in social media by looking at conversational threads," PloS one, vol. 11, no. 3, p. e0150989, 2016.[18] A. Zubiaga, M. Liakata, and R. Procter, \\Exploiting context for rumourdetection in social media," in International Conference on Social Informatics.Springer, 2017, pp. 109{123.[19] R. Collobert and J. Weston, \\A unified architecture for natural languageprocessing: Deep neural networks with multitask learning," in Proceedingsof the 25th international conference on Machine learning. ACM, 2008, pp.160{167.[20] O. Enayet and S. R. El-Beltagy, \\Niletmrg at semeval-2017 task 8: Determining rumour and veracity support for rumours on twitter." in Proceedingsof the 11th International Workshop on Semantic Evaluation (SemEval-2017),2017, pp. 470{474.[21] R. Caruana, \\Multitask learning: A knowledge-based source of inductive bias.machine learning," 1997.[22] J. Baxter, \\A bayesian/information theoretic model of learning to learn viamultiple task sampling," Machine learning, vol. 28, no. 1, pp. 7{39, 1997.[23] L. Duong, T. Cohn, S. Bird, and P. Cook, \\Low resource dependency parsing:Cross-lingual parameter sharing in a neural network parser," in Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguisticsand the 7th International Joint Conference on Natural Language Processing(Volume 2: Short Papers), 2015, pp. 845{850.[24] Y. Yang and T. M. Hospedales, \\Trace norm regularised deep multi-tasklearning," arXiv preprint arXiv:1606.04038, 2016.[25] A. Zubiaga, M. Liakata, and R. Procter, \\Learning reporting dynamics during breaking news for rumour detection in social media," arXiv preprintarXiv:1610.07363, 2016.[26] R. McCreadie, C. Macdonald, and I. Ounis, \\Crowdsourced rumour identification during emergencies," in Proceedings of the 24th International Conferenceon World Wide Web. ACM, 2015, pp. 965{970.[27] S. Ruder, \\An overview of multi-task learning in deep neural networks," arXivpreprint arXiv:1706.05098, 2017.[28] Y. S. Abu-Mostafa, \\Learning from hints in neural networks," Journal ofcomplexity, vol. 6, no. 2, pp. 192{198, 1990.[29] J. Baxter, \\A model of inductive bias learning," Journal of artificial intelligence research, vol. 12, pp. 149{198, 2000.[30] K. Cho, B. Van Merri¨enboer, D. Bahdanau, and Y. Bengio, \\On the propertiesof neural machine translation: Encoder-decoder approaches," arXiv preprintarXiv:1409.1259, 2014.[31] D. Bahdanau, K. Cho, and Y. Bengio, \\Neural machine translation by jointlylearning to align and translate," arXiv preprint arXiv:1409.0473, 2014.[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, \\Efficient estimation of wordrepresentations in vector space," arXiv preprint arXiv:1301.3781, 2013. 描述 碩士
國立政治大學
資訊科學系碩士在職專班
105971005資料來源 http://thesis.lib.nccu.edu.tw/record/#G0105971005 資料類型 thesis dc.contributor.advisor 胡毓忠 zh_TW dc.contributor.advisor Hu, Yuh-Jong en_US dc.contributor.author (作者) 劉永鈞 zh_TW dc.contributor.author (作者) Liou, Yung-Jiun en_US dc.creator (作者) 劉永鈞 zh_TW dc.creator (作者) Liou, Yung-Jiun en_US dc.date (日期) 2020 en_US dc.date.accessioned 2-三月-2020 11:38:01 (UTC+8) - dc.date.available 2-三月-2020 11:38:01 (UTC+8) - dc.date.issued (上傳時間) 2-三月-2020 11:38:01 (UTC+8) - dc.identifier (其他 識別碼) G0105971005 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/128991 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊科學系碩士在職專班 zh_TW dc.description (描述) 105971005 zh_TW dc.description.abstract (摘要) 偵測假新聞是一項十分艱鉅的任務,包含偵測假新聞(Rumour Detection)、假新聞追蹤(Rumour Tracking)及立場分類(Stance Classification),從這些方法最終對假新聞作驗證(Rumour Verification)。欲做到辨識新聞的驗證以使讀者能閱讀到正確的新聞及資訊,本研究希望探索以多重任務學習(Multi-Task Learning, MTL)用於處理數量龐大的假新聞資料上,並比較與傳統深度學習的差異,達到自動辨識及判別假新聞的目的。本研究使用RumourEval、PHEME兩種假新聞資料集來進行深度遞歸神經網路(Recurrent Neural Network, RNN)中的GRU(Gate Recurrent Unit)演算法實作,並進行多重任務學習的訓練,對假新聞進行分類,進而找出處理識別假新聞的最佳參數。最後透過各種模擬實驗來比較改良過後的深度學習演算法(即GRU)與傳統深度學習的差異,並依據實驗結果進行量化與質化的分析。 zh_TW dc.description.abstract (摘要) Detecting fake news is a very difficult task, including Rumour Detection,Rumour Tracking and Stance Classification, and finally leading to Rumour Verification. To identify the authenticity of news so that readers can read the correct news and information, this research hopes to explore the use of Multi-Task Learning technology for processing a large number of fake news datasets and compare it with traditional deep learning, to achieve the purpose of automatically identifying and distinguishing fake news.This research uses two fake news datasets, RumourEval and PHEME,to implement the GRU (Gated Recurrent Unit) algorithm of the Recurrent Neural Network (RNN), and trains for multiple tasks to perform fake news classification to find the best parameters for handling fake news. Finally, through various simulation experiments, the differences between the improved and traditional deep learning algorithm will be compared, and quantitative and qualitative analysis is performed based on the experimental results en_US dc.description.tableofcontents 目錄 iv表目錄 vi圖目錄 vii第一章導論 11.1 研究動機 11.2 研究目的 2第二章研究背景 42.1 假新聞定義 42.2 假新聞資料集 52.2.1 RumourEval 52.2.2 PHEME 62.3 多重任務學習 82.3.1 硬參數共享 92.3.2 軟參數共享 102.4 遞歸神經網路及GRU 102.4.1 遞歸神經網路 102.4.2 長短期記憶模型 122.4.3 GRU 13第三章相關研究 143.1 假新聞資料集研究案例 143.2 假新聞偵測研究案例 163.3 多重任務學習研究案例 163.4 遞歸神經網路及GRU研究案例 18第四章學習流程設計 194.1 假新聞分類模型 194.2 序列法 204.3 多重任務學習方法 224.4 特徵 22第五章研究實作與比較 235.1 環境前處理流程 235.1.1 Keras 235.1.2 CUDA 245.2 實作使用技術及分類評價指標 245.3 實驗結果與比較 25第六章結論與未來展望 286.1 研究結論 286.2 未來展望 28參考文獻 29 zh_TW dc.format.extent 1543537 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0105971005 en_US dc.subject (關鍵詞) 社交媒體 zh_TW dc.subject (關鍵詞) 假新聞 zh_TW dc.subject (關鍵詞) 錯誤資訊 zh_TW dc.subject (關鍵詞) 多重任務學習 zh_TW dc.subject (關鍵詞) 假新聞資料集 zh_TW dc.subject (關鍵詞) 遞歸神經網路 zh_TW dc.subject (關鍵詞) 傳統深度學習 zh_TW dc.subject (關鍵詞) Social Media en_US dc.subject (關鍵詞) Fake News en_US dc.subject (關鍵詞) Misinformation en_US dc.subject (關鍵詞) Muti-Task Learning en_US dc.subject (關鍵詞) PHEME en_US dc.subject (關鍵詞) Fake News Dataset en_US dc.subject (關鍵詞) Recurrent Neural Network en_US dc.subject (關鍵詞) GRU en_US dc.subject (關鍵詞) Traditional Deep Learning en_US dc.title (題名) 以深度遞歸神經網路實施多重任務學習偵測假新聞 zh_TW dc.title (題名) Deep Recurrent Neural Networks with Multi-Task Learning for Fake News Detection en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) [1] P. N. Howard, G. Bolsover, B. Kollanyi, S. Bradshaw, and L.-M. Neudert,\\Junk news and bots during the us election: What were michigan voterssharing over twitter," CompProp, OII, Data Memo, 2017.[2] E. Kochkina, M. Liakata, and A. Zubiaga, \\All-in-one: Multi-task learningfor rumour verification," arXiv preprint arXiv:1806.03713, 2018.[3] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, \\Detection and resolution of rumours in social media: A survey," ACM ComputingSurveys (CSUR), vol. 51, no. 2, p. 32, 2018.[4] Z. Zhao, P. Resnick, and Q. Mei, \\Enquiring minds: Early detection of rumorsin social media from enquiry posts," in Proceedings of the 24th InternationalConference on World Wide Web. International World Wide Web ConferencesSteering Committee, 2015, pp. 1395{1405.[5] L. Derczynski, K. Bontcheva, M. Liakata, R. Procter, G. W. S. Hoi, andA. Zubiaga, \\Semeval-2017 task 8: Rumoureval: Determining rumour veracity and support for rumours," arXiv preprint arXiv:1704.05972, 2017.[6] M. Mendoza, B. Poblete, and C. Castillo, \\Twitter under crisis: Can we trustwhat we rt?" in Proceedings of the first workshop on social media analytics.ACM, 2010, pp. 71{79.[7] R. Procter, F. Vis, and A. Voss, \\Reading the riots on twitter: methodological innovation for the analysis of big data," International journal of socialresearch methodology, vol. 16, no. 3, pp. 197{214, 2013.[8] M. Lukasik, P. Srijith, D. Vu, K. Bontcheva, A. Zubiaga, and T. Cohn,\\Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter," in Proceedings of the 54thAnnual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers), vol. 2, 2016, pp. 393{398.[9] E. Kochkina, M. Liakata, and I. Augenstein, \\Turing at semeval-2017 task 8:Sequential approach to rumour stance classification with branch-lstm," arXivpreprint arXiv:1704.07221, 2017.[10] T. Chen, X. Li, H. Yin, and J. Zhang, \\Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection," in PacificAsia Conference on Knowledge Discovery and Data Mining. Springer, 2018,pp. 40{52.[11] G. Giasemidis, C. Singleton, I. Agrafiotis, J. R. Nurse, A. Pilgrim, C. Willis,and D. V. Greetham, \\Determining the veracity of rumours on twitter," inInternational Conference on Social Informatics. Springer, 2016, pp. 185{205.[12] C. Boididou, S. Papadopoulos, Y. Kompatsiaris, S. Schifferes, and N. Newman, \\Challenges of computational verification in social multimedia," in Proceedings of the 23rd International Conference on World Wide Web. ACM,2014, pp. 743{748.[13] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,\\Detecting rumors from microblogs with recurrent neural networks." in Ijcai,2016, pp. 3818{3824.[14] S. Kwon, M. Cha, and K. Jung, \\Rumor detection over varying time windows," PloS one, vol. 12, no. 1, p. e0168344, 2017.[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, \\Empirical evaluationof gated recurrent neural networks on sequence modeling," arXiv preprintarXiv:1412.3555, 2014.[16] C. Wardle and H. Derakhshan, \\Information disorder: Toward an interdisciplinary framework for research and policy making," Council of Europe Report,vol. 27, 2017.[17] A. Zubiaga, M. Liakata, R. Procter, G. W. S. Hoi, and P. Tolmie, \\Analysinghow people orient to and spread rumours in social media by looking at conversational threads," PloS one, vol. 11, no. 3, p. e0150989, 2016.[18] A. Zubiaga, M. Liakata, and R. Procter, \\Exploiting context for rumourdetection in social media," in International Conference on Social Informatics.Springer, 2017, pp. 109{123.[19] R. Collobert and J. Weston, \\A unified architecture for natural languageprocessing: Deep neural networks with multitask learning," in Proceedingsof the 25th international conference on Machine learning. ACM, 2008, pp.160{167.[20] O. Enayet and S. R. El-Beltagy, \\Niletmrg at semeval-2017 task 8: Determining rumour and veracity support for rumours on twitter." in Proceedingsof the 11th International Workshop on Semantic Evaluation (SemEval-2017),2017, pp. 470{474.[21] R. Caruana, \\Multitask learning: A knowledge-based source of inductive bias.machine learning," 1997.[22] J. Baxter, \\A bayesian/information theoretic model of learning to learn viamultiple task sampling," Machine learning, vol. 28, no. 1, pp. 7{39, 1997.[23] L. Duong, T. Cohn, S. Bird, and P. Cook, \\Low resource dependency parsing:Cross-lingual parameter sharing in a neural network parser," in Proceedingsof the 53rd Annual Meeting of the Association for Computational Linguisticsand the 7th International Joint Conference on Natural Language Processing(Volume 2: Short Papers), 2015, pp. 845{850.[24] Y. Yang and T. M. Hospedales, \\Trace norm regularised deep multi-tasklearning," arXiv preprint arXiv:1606.04038, 2016.[25] A. Zubiaga, M. Liakata, and R. Procter, \\Learning reporting dynamics during breaking news for rumour detection in social media," arXiv preprintarXiv:1610.07363, 2016.[26] R. McCreadie, C. Macdonald, and I. Ounis, \\Crowdsourced rumour identification during emergencies," in Proceedings of the 24th International Conferenceon World Wide Web. ACM, 2015, pp. 965{970.[27] S. Ruder, \\An overview of multi-task learning in deep neural networks," arXivpreprint arXiv:1706.05098, 2017.[28] Y. S. Abu-Mostafa, \\Learning from hints in neural networks," Journal ofcomplexity, vol. 6, no. 2, pp. 192{198, 1990.[29] J. Baxter, \\A model of inductive bias learning," Journal of artificial intelligence research, vol. 12, pp. 149{198, 2000.[30] K. Cho, B. Van Merri¨enboer, D. Bahdanau, and Y. Bengio, \\On the propertiesof neural machine translation: Encoder-decoder approaches," arXiv preprintarXiv:1409.1259, 2014.[31] D. Bahdanau, K. Cho, and Y. Bengio, \\Neural machine translation by jointlylearning to align and translate," arXiv preprint arXiv:1409.0473, 2014.[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, \\Efficient estimation of wordrepresentations in vector space," arXiv preprint arXiv:1301.3781, 2013. zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202000256 en_US