學術產出-會議論文

文章檢視/開啟

書目匯出

Google ScholarTM

政大圖書館

引文資訊

TAIR相關學術產出

題名 Image Denoising based on Overlapped and Adaptive Gaussian Smoothing and Convolutional Refinement Networks
作者 彭彥璁
Peng, Yan-Tsung
Lin, M.-H.
Tang, C.-L.
Wu, C.-H.
貢獻者 資科系
日期 2019-09
上傳時間 2-三月-2020 15:23:01 (UTC+8)
摘要 We propose to use overlapped and adaptive Gaussian smoothing (OAGS) and convolutional refinement networks (CRN) to recover images corrupted by salt-and-pepper noise. First, the OAGS method identifies noise pixels and recover them. Then, CRN further improve and restore the recovered results with sharper and clearer edges. Experimental results demonstrate the proposed OAGS+CRN method significantly outperforms state-of-the-art denoising methods.
關聯 2019 IEEE International Symposium on Multimedia (ISM), University of California, Irvine
資料類型 conference
DOI https://doi.org/10.1109/ISM46123.2019.00032
dc.contributor 資科系-
dc.creator (作者) 彭彥璁-
dc.creator (作者) Peng, Yan-Tsung-
dc.creator (作者) Lin, M.-H.-
dc.creator (作者) Tang, C.-L.-
dc.creator (作者) Wu, C.-H.-
dc.date (日期) 2019-09-
dc.date.accessioned 2-三月-2020 15:23:01 (UTC+8)-
dc.date.available 2-三月-2020 15:23:01 (UTC+8)-
dc.date.issued (上傳時間) 2-三月-2020 15:23:01 (UTC+8)-
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/129021-
dc.description.abstract (摘要) We propose to use overlapped and adaptive Gaussian smoothing (OAGS) and convolutional refinement networks (CRN) to recover images corrupted by salt-and-pepper noise. First, the OAGS method identifies noise pixels and recover them. Then, CRN further improve and restore the recovered results with sharper and clearer edges. Experimental results demonstrate the proposed OAGS+CRN method significantly outperforms state-of-the-art denoising methods.-
dc.format.extent 399342 bytes-
dc.format.mimetype application/pdf-
dc.relation (關聯) 2019 IEEE International Symposium on Multimedia (ISM), University of California, Irvine-
dc.title (題名) Image Denoising based on Overlapped and Adaptive Gaussian Smoothing and Convolutional Refinement Networks-
dc.type (資料類型) conference-
dc.identifier.doi (DOI) 10.1109/ISM46123.2019.00032-
dc.doi.uri (DOI) https://doi.org/10.1109/ISM46123.2019.00032-